Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Glia ; 72(8): 1402-1417, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38591338

RESUMO

It is well-established that spinal microglia and peripheral macrophages play critical roles in the etiology of neuropathic pain; however, growing evidence suggests sex differences in pain hypersensitivity owing to microglia and macrophages. Therefore, it is crucial to understand sex- and androgen-dependent characteristics of pain-related myeloid cells in mice with nerve injury-induced neuropathic pain. To deplete microglia and macrophages, pexidartinib (PLX3397), an inhibitor of the colony-stimulating factor 1 receptor, was orally administered, and mice were subjected to partial sciatic nerve ligation (PSL). Following PSL induction, healthy male and female mice and male gonadectomized (GDX) mice exhibited similar levels of spinal microglial activation, peripheral macrophage accumulation, and mechanical allodynia. Treatment with PLX3397 significantly suppressed mechanical allodynia in normal males; this was not observed in female and GDX male mice. Sex- and androgen-dependent differences in the PLX3397-mediated preventive effects were observed on spinal microglia and dorsal root ganglia (DRG) macrophages, as well as in expression patterns of pain-related inflammatory mediators in these cells. Conversely, no sex- or androgen-dependent differences were detected in sciatic nerve macrophages, and inhibition of peripheral CC-chemokine receptor 5 prevented neuropathic pain in both sexes. Collectively, these findings demonstrate the presence of considerable sex- and androgen-dependent differences in the etiology of neuropathic pain in spinal microglia and DRG macrophages but not in sciatic nerve macrophages. Given that the mechanisms of neuropathic pain may differ among experimental models and clinical conditions, accumulating several lines of evidence is crucial to comprehensively clarifying the sex-dependent regulatory mechanisms of pain.


Assuntos
Microglia , Neuralgia , Pirróis , Caracteres Sexuais , Animais , Masculino , Feminino , Camundongos , Neuralgia/metabolismo , Neuralgia/tratamento farmacológico , Neuralgia/etiologia , Microglia/efeitos dos fármacos , Microglia/metabolismo , Pirróis/farmacologia , Aminopiridinas/farmacologia , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Nervo Isquiático/lesões , Nervo Isquiático/efeitos dos fármacos , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Medula Espinal/patologia , Traumatismos dos Nervos Periféricos/complicações , Traumatismos dos Nervos Periféricos/metabolismo , Modelos Animais de Doenças
2.
EMBO J ; 42(14): e112614, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37096681

RESUMO

Tumor-initiating cells are major drivers of chemoresistance and attractive targets for cancer therapy, however, their identity in human pancreatic ductal adenocarcinoma (PDAC) and the key molecules underlying their traits remain poorly understood. Here, we show that a cellular subpopulation with partial epithelial-mesenchymal transition (EMT)-like signature marked by high expression of receptor tyrosine kinase-like orphan receptor 1 (ROR1) is the origin of heterogeneous tumor cells in PDAC. We demonstrate that ROR1 depletion suppresses tumor growth, recurrence after chemotherapy, and metastasis. Mechanistically, ROR1 induces the expression of Aurora kinase B (AURKB) by activating E2F through c-Myc to enhance PDAC proliferation. Furthermore, epigenomic analyses reveal that ROR1 is transcriptionally dependent on YAP/BRD4 binding at the enhancer region, and targeting this pathway reduces ROR1 expression and prevents PDAC growth. Collectively, our findings reveal a critical role for ROR1high cells as tumor-initiating cells and the functional importance of ROR1 in PDAC progression, thereby highlighting its therapeutic targetability.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Proteínas Nucleares/metabolismo , Linhagem Celular Tumoral , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/genética , Transição Epitelial-Mesenquimal , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/genética , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo , Proteínas de Ciclo Celular/metabolismo , Neoplasias Pancreáticas
3.
Elife ; 122023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36695573

RESUMO

Skeletal muscle exhibits remarkable plasticity in response to environmental cues, with stress-dependent effects on the fast-twitch and slow-twitch fibers. Although stress-induced gene expression underlies environmental adaptation, it is unclear how transcriptional and epigenetic factors regulate fiber type-specific responses in the muscle. Here, we show that flavin-dependent lysine-specific demethylase-1 (LSD1) differentially controls responses to glucocorticoid and exercise in postnatal skeletal muscle. Using skeletal muscle-specific LSD1-knockout mice and in vitro approaches, we found that LSD1 loss exacerbated glucocorticoid-induced atrophy in the fast fiber-dominant muscles, with reduced nuclear retention of Foxk1, an anti-autophagic transcription factor. Furthermore, LSD1 depletion enhanced endurance exercise-induced hypertrophy in the slow fiber-dominant muscles, by induced expression of ERRγ, a transcription factor that promotes oxidative metabolism genes. Thus, LSD1 serves as an 'epigenetic barrier' that optimizes fiber type-specific responses and muscle mass under the stress conditions. Our results uncover that LSD1 modulators provide emerging therapeutic and preventive strategies against stress-induced myopathies such as sarcopenia, cachexia, and disuse atrophy.


Assuntos
Glucocorticoides , Doenças Musculares , Camundongos , Animais , Glucocorticoides/metabolismo , Músculo Esquelético/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Fatores de Transcrição/metabolismo , Histona Desmetilases/genética , Histona Desmetilases/metabolismo
4.
Cancer Sci ; 114(4): 1541-1555, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36562400

RESUMO

The high glycolytic activity of cancer cells leads to lactic acidosis (LA) in the tumor microenvironment. LA is not merely a consequence of metabolic activities but also has functional roles in metabolic reprogramming and cancer progression. Cholangiocarcinoma (CCA) cells exhibit a high dependency on glycolysis for survival and growth, but the specific effects of LA on cellular characteristics remain unknown. Here, we demonstrate that long-term LA (LLA) reprograms the metabolic phenotype of CCA cells from glycolytic to oxidative and enhances their migratory activity. In CCA cell culture, short-term LA (24 h) showed a growth inhibitory effect, while extended LA exposure for more than 2 weeks (LLA) led to enhanced cell motility. Coincidentally, LLA enhanced the respiratory capacity with an increase in mitochondrial mass. Inhibition of mitochondrial function abolished LLA-induced cell motility, suggesting that metabolic remodeling affects the phenotypic outcomes. RNA-sequencing analysis revealed that LLA upregulated genes associated with cell migration and epithelial-mesenchymal transition (EMT), including thrombospondin-1 (THBS1), which encodes a pro-EMT-secreted protein. Inhibition of THBS1 resulted in the suppression of both LLA-induced cell motility and respiratory capacity. Moreover, high THBS1 expression was associated with poor survival in patients with CCA. Collectively, our study suggests that the increased expression of THBS1 by LLA promotes phenotypic alterations, leading to CCA progression.


Assuntos
Acidose Láctica , Neoplasias dos Ductos Biliares , Colangiocarcinoma , Humanos , Regulação para Cima , Acidose Láctica/genética , Linhagem Celular Tumoral , Colangiocarcinoma/patologia , Transição Epitelial-Mesenquimal/genética , Fenótipo , Movimento Celular/genética , Ductos Biliares Intra-Hepáticos/metabolismo , Neoplasias dos Ductos Biliares/patologia , Trombospondinas/genética , Microambiente Tumoral/genética
5.
Nucleic Acids Res ; 50(17): 9765-9779, 2022 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-36095121

RESUMO

Nucleus-mitochondria crosstalk is essential for cellular and organismal homeostasis. Although anterograde (nucleus-to-mitochondria) pathways have been well characterized, retrograde (mitochondria-to-nucleus) pathways remain to be clarified. Here, we found that mitochondrial dysfunction triggered a retrograde signaling via unique transcriptional and chromatin factors in hepatic cells. Our transcriptomic analysis revealed that the loss of mitochondrial transcription factor A led to mitochondrial dysfunction and dramatically induced expression of amphiregulin (AREG) and other secretory protein genes. AREG expression was also induced by various mitochondria stressors and was upregulated in murine liver injury models, suggesting that AREG expression is a hallmark of mitochondrial damage. Using epigenomic and informatic approaches, we identified that mitochondrial dysfunction-responsive enhancers of AREG gene were activated by c-JUN/YAP1/TEAD axis and were repressed by chromatin remodeler BRG1. Furthermore, while mitochondrial dysfunction-activated enhancers were enriched with JUN and TEAD binding motifs, the repressed enhancers possessed the binding motifs for hepatocyte nuclear factor 4α, suggesting that both stress responsible and cell type-specific enhancers were reprogrammed. Our study revealed that c-JUN and YAP1-mediated enhancer activation shapes the mitochondrial stress-responsive phenotype, which may shift from metabolism to stress adaptation including protein secretion under such stressed conditions.


Assuntos
Epigenômica , Mitocôndrias , Anfirregulina/metabolismo , Animais , Cromatina/genética , Cromatina/metabolismo , Fatores Nucleares de Hepatócito/metabolismo , Camundongos , Mitocôndrias/genética , Mitocôndrias/metabolismo
6.
Life Sci ; 302: 120648, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35598658

RESUMO

AIMS: Lactic acidosis (LA) generated in tumor microenvironment promotes tumor metastasis and drug resistance. This study aimed to demonstrate the impacts and the mechanisms of LA on aldehyde dehydrogenase1A3 (ALDH1A3) in promoting aggressiveness and gemcitabine resistance in cholangiocarcinoma (CCA) cell lines. The clinical relevance and the molecular pathway related to the upregulation of ALDH1A3 in LA cells will be revealed. MAIN METHODS: ALDH1A3 expression and its clinical significances in CCA tissues were analyzed using the GEO databases. Human CCA cell lines, KKU-213A-LA and KKU-213B-LA maintained in the LA medium were studied and compared with its parental cells cultured in normal medium. Aggressive features-proliferation, colony formation, migration, invasion, and gemcitabine response were determined. Expression of ALDH1A3, EGFR and the downstream effectors were analyzed using real-time PCR and Western blotting. KEY FINDINGS: ALDH1A3 was upregulated in patient CCA tissues and correlated with LDHA and shorter survival of CCA patients. mRNA and protein of ALDH1A3 were increased in LA cells. Attenuation of ALDH1A3 expression by siRNA significantly reduced cell proliferation, colony formation, migration, invasion, and gemcitabine resistance of LA cells, and gemcitabine resistant cells. The EGF/EGFR signaling via Erk and STAT3 was pinned to be involved in the induction of ALDH1A3 expression in LA cells. The transcriptomic analysis from TCGA dataset supported the links between LDHA, EGFR and ALDH1A3 in several tumor tissues. SIGNIFICANCE: Lactic acidosis upregulated EGFR and ALDH1A3 expression, leading to the aggressiveness of CCA cells. The EGFR/ALDH1A3 axis could be a novel therapeutic target to eradicate metastatic CCA.


Assuntos
Acidose Láctica , Neoplasias dos Ductos Biliares , Colangiocarcinoma , Humanos , Aldeídos , Neoplasias dos Ductos Biliares/patologia , Ductos Biliares Intra-Hepáticos/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Colangiocarcinoma/metabolismo , Receptores ErbB/genética , Gencitabina , Microambiente Tumoral
7.
Sci Rep ; 12(1): 5593, 2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35379840

RESUMO

Tissue aging is a major cause of aging-related disabilities and a shortened life span. Understanding how tissue aging progresses and identifying the factors underlying tissue aging are crucial; however, the mechanism of tissue aging is not fully understood. Here we show that the biosynthesis of S-adenosyl-methionine (SAM), the major cellular donor of methyl group for methylation modifications, potently accelerates the aging-related defects during Drosophila oogenesis. An aging-related increase in the SAM-synthetase (Sam-S) levels in the germline leads to an increase in ovarian SAM levels. Sam-S-dependent biosynthesis of SAM controls aging-related defects in oogenesis through two mechanisms, decreasing the ability to maintain germline stem cells and accelerating the improper formation of egg chambers. Aging-related increases in SAM commonly occur in mouse reproductive tissue and the brain. Therefore, our results raise the possibility suggesting that SAM is the factor related to tissue aging beyond the species and tissues.


Assuntos
Drosophila , S-Adenosilmetionina , Envelhecimento , Animais , Metionina Adenosiltransferase , Camundongos , Oogênese
8.
J Cachexia Sarcopenia Muscle ; 12(6): 1832-1847, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34599649

RESUMO

BACKGROUND: Sarcopenia with chronic kidney disease (CKD) progression is associated with life prognosis. Oxidative stress has attracted interest as a trigger for causing CKD-related muscular atrophy. Advanced oxidation protein products (AOPPs), a uraemic toxin, are known to increase oxidative stress. However, the role of AOPPs on CKD-induced muscle atrophy remains unclear. METHODS: In a retrospective case-control clinical study, we evaluated the relationship between serum AOPPs levels and muscle strength in haemodialysis patients with sarcopenia (n = 26, mean age ± SEM: 78.5 ± 1.4 years for male patients; n = 22, mean age ± SEM: 79.1 ± 1.5 for female patients), pre-sarcopenia (n = 12, mean age ± SEM: 73.8 ± 2.0 years for male patients; n = 4, mean age ± SEM: 74.3 ± 4.1 for female patients) or without sarcopenia (n = 12, mean age ± SEM: 71.3 ± 1.6 years for male patients; n = 7, mean age ± SEM: 77.7 ± 1.6 for female ). The molecular mechanism responsible for the AOPPs-induced muscle atrophy was investigated by using 5/6-nephrectomized CKD mice, AOPPs-overloaded mice, and C2C12 mouse myoblast cells. RESULTS: The haemodialysis patients with sarcopenia showed higher serum AOPPs levels as compared with the patients without sarcopenia. The serum AOPPs levels showed a negative correlation with grip strength (P < 0.01 for male patients, P < 0.01 for female patients) and skeletal muscle index (P < 0.01 for male patients). Serum AOPPs levels showed a positive correlation with cysteinylated albumin (Cys-albumin), a marker of oxidative stress (r2  = 0.398, P < 0.01). In the gastrocnemius of CKD mice, muscle AOPPs levels were also increased, and it showed a positive correlation with atrogin-1 (r2  = 0.538, P < 0.01) and myostatin expression (r2  = 0.421, P < 0.05), but a negative correlation with PGC-1α expression (r2  = 0.405, P < 0.05). Using C2C12 cells, AOPPs increased atrogin-1 and myostatin expression through the production of reactive oxygen species via CD36/NADPH oxidase pathway, and decreased myotube formation. AOPPs also induced mitochondrial dysfunction. In the AOPPs-overloaded mice showed that decreasing running time and hanging time accompanied by increasing AOPPs levels and decreasing cross-sectional area in gastrocnemius. CONCLUSIONS: Advanced oxidation protein products contribute to CKD-induced sarcopenia, suggesting that AOPPs or its downstream signalling pathway could be a therapeutic target for the treatment of CKD-induced sarcopenia. Serum AOPPs or Cys-albumin levels could be a new diagnostic marker for sarcopenia in CKD.


Assuntos
Insuficiência Renal Crônica , Sarcopenia , Produtos da Oxidação Avançada de Proteínas/metabolismo , Animais , Antígenos CD36 , Feminino , Humanos , Masculino , Camundongos , NADPH Oxidases/metabolismo , Estresse Oxidativo , Oxirredutases , Insuficiência Renal Crônica/complicações , Estudos Retrospectivos , Sarcopenia/etiologia
9.
Blood Cancer Discov ; 2(4): 370-387, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34258103

RESUMO

Lysine demethylase 5A (KDM5A) is a negative regulator of histone H3K4 trimethylation, a histone mark associated with activate gene transcription. We identify that KDM5A interacts with the P-TEFb complex and cooperates with MYC to control MYC targeted genes in multiple myeloma (MM) cells. We develop a cell-permeable and selective KDM5 inhibitor, JQKD82, that increases histone H3K4me3 but paradoxically inhibits downstream MYC-driven transcriptional output in vitro and in vivo. Using genetic ablation together with our inhibitor, we establish that KDM5A supports MYC target gene transcription independent of MYC itself, by supporting TFIIH (CDK7)- and P-TEFb (CDK9)-mediated phosphorylation of RNAPII. These data identify KDM5A as a unique vulnerability in MM functioning through regulation of MYC-target gene transcription, and establish JQKD82 as a tool compound to block KDM5A function as a potential therapeutic strategy for MM.


Assuntos
Lisina , Mieloma Múltiplo , Quinase 9 Dependente de Ciclina/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Genes cdc , Humanos , Metilação , Mieloma Múltiplo/genética , Proteínas Proto-Oncogênicas c-myc/genética , RNA Polimerase II , Proteína 2 de Ligação ao Retinoblastoma , Quinase Ativadora de Quinase Dependente de Ciclina
10.
Blood Adv ; 5(9): 2305-2318, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33929501

RESUMO

Acute myeloid leukemia (AML) is a heterogenous malignancy characterized by distinct lineage subtypes and various genetic/epigenetic alterations. As with other neoplasms, AML cells have well-known aerobic glycolysis, but metabolic variations depending on cellular lineages also exist. Lysine-specific demethylase-1 (LSD1) has been reported to be crucial for human leukemogenesis, which is currently one of the emerging therapeutic targets. However, metabolic roles of LSD1 and lineage-dependent factors remain to be elucidated in AML cells. Here, we show that LSD1 directs a hematopoietic lineage-specific metabolic program in AML subtypes. Erythroid leukemia (EL) cells particularly showed activated glycolysis and high expression of LSD1 in both AML cell lines and clinical samples. Transcriptome, chromatin immunoprecipitation-sequencing, and metabolomic analyses revealed that LSD1 was essential not only for glycolysis but also for heme synthesis, the most characteristic metabolic pathway of erythroid origin. Notably, LSD1 stabilized the erythroid transcription factor GATA1, which directly enhanced the expression of glycolysis and heme synthesis genes. In contrast, LSD1 epigenetically downregulated the granulo-monocytic transcription factor C/EBPα. Thus, the use of LSD1 knockdown or chemical inhibitor dominated C/EBPα instead of GATA1 in EL cells, resulting in metabolic shifts and growth arrest. Furthermore, GATA1 suppressed the gene encoding C/EBPα that then acted as a repressor of GATA1 target genes. Collectively, we conclude that LSD1 shapes metabolic phenotypes in EL cells by balancing these lineage-specific transcription factors and that LSD1 inhibitors pharmacologically cause lineage-dependent metabolic remodeling.


Assuntos
Leucemia Eritroblástica Aguda , Proteína alfa Estimuladora de Ligação a CCAAT , Fator de Transcrição GATA1/genética , Histona Desmetilases/genética , Humanos , Leucemia Eritroblástica Aguda/genética , Proteínas Proto-Oncogênicas , Fatores de Transcrição
11.
Cancer Sci ; 112(1): 254-264, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33141432

RESUMO

Diabetes is a major risk factor in the development and progression of several cancers including cholangiocarcinoma (CCA). However, the molecular mechanism by which hyperglycemia potentiates progression of CCA is not clearly understood. Here, we showed that a high glucose condition significantly increased reactive oxygen species (ROS) production and promoted aggressive phenotypes of CCA cells, including proliferation and migration activities. Mannosidase alpha class 2a member 2 (MAN2A2), was upregulated at both mRNA and protein levels in a high glucose- and ROS-dependent manner. In addition, cell proliferation and migration were significantly reduced by MAN2A2 knockdown. Based on our proteome and in silico analyses, we further found that chromodomain helicase DNA-binding protein 8 (CHD8) was induced by ROS signaling and regulated MAN2A2 expression. Overexpression of CHD8 increased MAN2A2 expression, while CHD8 knockdown dramatically reduced proliferation and migration as well as MAN2A2 expression in CCA cells. Moreover, both MAN2A2 and CHD8 were highly expressed with positive correlation in CCA tumor tissues. Collectively, these data suggested that high glucose conditions promote CCA progression through ROS-mediated upregulation of MAN2A2 and CHD8. Thus, glucose metabolism is a promising therapeutic target to control tumor progression in patients with CCA and diabetes.


Assuntos
Neoplasias dos Ductos Biliares/metabolismo , Colangiocarcinoma/metabolismo , Proteínas de Ligação a DNA/metabolismo , Glucose/metabolismo , Manosidases/metabolismo , Fatores de Transcrição/metabolismo , Neoplasias dos Ductos Biliares/patologia , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Colangiocarcinoma/patologia , Progressão da Doença , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , Hiperglicemia/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Regulação para Cima
12.
Sci Rep ; 10(1): 8521, 2020 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-32444613

RESUMO

LSD1/KDM1A is a widely conserved lysine-specific demethylase that removes methyl groups from methylated proteins, mainly histone H3. We previously isolated the zebrafish LSD1 gene and demonstrated that it is required for primitive hematopoiesis. Recently, a neuron-specific splicing variant of LSD1 was found in mammals and its specific functions and substrate specificities were reported. To our surprise, zebrafish LSD1 cDNA, which we previously analyzed, was corresponded to the neuron-specific variant in mammals. In this study, we investigated the structures and expression of LSD1 splicing variants in zebrafish and found all 4 types of LSD1 isoforms: LSD1, LSD1+2al, LSD1+8al and LSD1+2al8al. Interestingly, LSD1+8al/LSD1+2al8al, which correspond to mammalian neuron-specific variants, expressed ubiquitously in zebrafish. We also performed phenotypic rescue experiments of a zebrafish LSD1 mutant (kdm1ait627) using human and zebrafish LSD1 variants to identify which variant is involved in primitive hematopoiesis. Unexpectedly, the overexpression of all types of human and zebrafish variants was able to rescue the hematopoietic phenotypes in LSD1 mutants. Furthermore, enzymatic-deficient LSD1K661A (human) and K638A (zebrafish) were also able to rescue the mutant phenotypes. These results suggest that the LSD1 functions in zebrafish primitive hematopoiesis are free from any splicing-dependent regulation or demethylation reaction.


Assuntos
Embrião não Mamífero/fisiologia , Hematopoese , Histona Desmetilases/metabolismo , Lisina/genética , Splicing de RNA , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Sequência de Aminoácidos , Animais , Células Cultivadas , Embrião não Mamífero/citologia , Histona Desmetilases/genética , Humanos , Lisina/metabolismo , Metilação , Mutação , Isoformas de Proteínas , Homologia de Sequência , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
13.
Genome Biol ; 21(1): 77, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32234052

RESUMO

BACKGROUND: Epigenetic modifications, including DNA methylation, play an important role in gene silencing and genome stability. Consequently, epigenetic dysregulation can cause several diseases, such as cancer, obesity, diabetes, autism, and imprinting disorders. RESULTS: We validate three methods for the generation of epigenome-edited mice using the dCas9-SunTag and single-chain variable fragment-TET1 catalytic domain. We generate model mice for Silver-Russell syndrome (SRS), an imprinting disorder, by target-specific DNA demethylation in the H19 differentially methylated region. Like SRS patients, these mice show H19 upregulation and Igf2 downregulation, leading to severe intrauterine and postnatal growth retardation. CONCLUSION: This is the first report of an imprinting disease model animal generated by targeted demethylation of specific loci of the epigenome in fertilized eggs. Epigenome-edited animals are also useful for exploring the causative epimutations in epigenetic diseases.


Assuntos
Modelos Animais de Doenças , Epigênese Genética , Epigenoma , Camundongos , Síndrome de Silver-Russell/genética , Animais , Sistemas CRISPR-Cas , Metilação de DNA , Células-Tronco Embrionárias/metabolismo , Epigenômica/métodos , Humanos , RNA Longo não Codificante/genética , Síndrome de Silver-Russell/diagnóstico por imagem , Zigoto/metabolismo
14.
J Nutr ; 150(2): 212-221, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31599944

RESUMO

BACKGROUND: Epidemiological research indicates that iron deficiency (ID) in infancy correlates with long-term cognitive impairment and behavioral disturbances, despite therapy. However, the mechanisms underlying these effects are unknown. OBJECTIVE: We investigated how ID affected postweaning behavior and monoamine concentration in rat brains to determine whether ID during the juvenile period affected gene expression and synapse formation in the prefrontal cortex (PFC) and nucleus accumbens (NAcc). METHODS: Fischer 344/Jcl postweaning male rats aged 21-39 d were fed low-iron diets (0.35 mg/kg iron; ID group) or standard AIN-93 G diets [3.5 mg/kg iron; control (CN) group]. After day 39, all rats were fed the iron-adequate diet. The locomotor activity was evaluated by the open field and elevated plus maze tests at 8 and 12 wk of age. Monoamine concentrations in the brain were analyzed using HPLC at 9 and 13 wk of age. Comprehensive gene expression analysis was performed in the PFC and NAcc at 13 wk of age. Finally, we investigated synaptic density in the PFC and NAcc by synaptophysin immunostaining. RESULTS: Behavioral tests revealed a significant reduction of the age-related decline in the total distance traveled in ID rats compared with CN rats (P < 0.05), indicating that ID affected hyperactivity, which persisted into adulthood (13 wk of age). At this age, reelin (Reln) mRNA expression (adjusted P < 0.01) decreased and synaptic density (P < 0.01) increased in the NAcc in the ID group. Regarding the mesolimbic pathway, homovanillic acid concentration increased in the NAcc, whereas the dopamine concentration decreased in the ventral midbrain. CONCLUSIONS: Our results suggest that ID during the postweaning period in male rats, despite complete iron repletion following ID, led to long-term hyperactivity via monoamine disturbance in the brain and an alteration in the synaptic plasticity accompanied by downregulation of Reln expression in the NAcc.


Assuntos
Anemia Ferropriva/complicações , Atividade Motora , Desmame , Anemia Ferropriva/fisiopatologia , Animais , Monoaminas Biogênicas/metabolismo , Encéfalo/metabolismo , Modelos Animais de Doenças , Feminino , Masculino , Ratos , Ratos Endogâmicos F344 , Proteína Reelina , Sinapses/metabolismo
15.
Cell Rep ; 29(1): 89-103.e7, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31577958

RESUMO

Tolerance to severe tumor microenvironments, including hypoxia and nutrient starvation, is a common feature of aggressive cancer cells and can be targeted. However, metabolic alterations that support cancer cells upon nutrient starvation are not well understood. Here, by comprehensive metabolome analyses, we show that glutamine deprivation leads to phosphoethanolamine (PEtn) accumulation in cancer cells via the downregulation of PEtn cytidylyltransferase (PCYT2), a rate-limiting enzyme of phosphatidylethanolamine biosynthesis. PEtn accumulation correlated with tumor growth under nutrient starvation. PCYT2 suppression was partially mediated by downregulation of the transcription factor ELF3. Furthermore, PCYT2 overexpression reduced PEtn levels and tumor growth. In addition, PEtn accumulation and PCYT2 downregulation in human breast tumors correlated with poor prognosis. Thus, we show that glutamine deprivation leads to tumor progression by regulating PE biosynthesis via the ELF3-PCYT2 axis. Furthermore, manipulating glutamine-responsive genes could be a therapeutic approach to limit cancer progression.


Assuntos
Regulação para Baixo/genética , Etanolaminas/metabolismo , Glutamina/metabolismo , RNA Nucleotidiltransferases/genética , Inanição/metabolismo , Animais , Linhagem Celular , Linhagem Celular Tumoral , Progressão da Doença , Células HeLa , Células Hep G2 , Células Endoteliais da Veia Umbilical Humana , Humanos , Células MCF-7 , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-ets/genética , Transcrição Gênica/genética
16.
Nucleic Acids Res ; 46(11): 5441-5454, 2018 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-29618057

RESUMO

The metabolic properties of cells are formed under the influence of environmental factors such as nutrients and hormones. Although such a metabolic program is likely initiated through epigenetic mechanisms, the direct links between metabolic cues and activities of chromatin modifiers remain largely unknown. In this study, we show that lysine-specific demethylase-1 (LSD1) controls the metabolic program in myogenic differentiation, under the action of catabolic hormone, glucocorticoids. By using transcriptomic and epigenomic approaches, we revealed that LSD1 bound to oxidative metabolism and slow-twitch myosin genes, and repressed their expression. Consistent with this, loss of LSD1 activity during differentiation enhanced the oxidative capacity of myotubes. By testing the effects of various hormones, we found that LSD1 levels were decreased by treatment with the glucocorticoid dexamethasone (Dex) in cultured myoblasts and in skeletal muscle from mice. Mechanistically, glucocorticoid signaling induced expression of a ubiquitin E3 ligase, JADE-2, which was responsible for proteasomal degradation of LSD1. Consequently, in differentiating myoblasts, chemical inhibition of LSD1, in combination with Dex treatment, synergistically de-repressed oxidative metabolism genes, concomitant with increased histone H3 lysine 4 methylation at these loci. These findings demonstrated that LSD1 serves as an epigenetic regulator linking glucocorticoid action to metabolic programming during myogenic differentiation.


Assuntos
Dexametasona/farmacologia , Glucocorticoides/farmacologia , Histona Desmetilases/metabolismo , Desenvolvimento Muscular/genética , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/citologia , Animais , Diferenciação Celular/genética , Linhagem Celular Tumoral , Histona Desmetilases/antagonistas & inibidores , Histonas/metabolismo , Masculino , Metilação , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Oxirredução , Ubiquitina-Proteína Ligases/metabolismo
17.
Cell Rep ; 18(9): 2148-2161, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28249161

RESUMO

Cellular senescence is an irreversible growth arrest that contributes to development, tumor suppression, and age-related conditions. Senescent cells show active metabolism compared with proliferating cells, but the underlying mechanisms remain unclear. Here we show that the SETD8/PR-Set7 methyltransferase, which catalyzes mono-methylation of histone H4 at lysine 20 (H4K20me1), suppresses nucleolar and mitochondrial activities to prevent cellular senescence. SETD8 protein was selectively downregulated in both oncogene-induced and replicative senescence. Inhibition of SETD8 alone was sufficient to trigger senescence. Under these states, the expression of genes encoding ribosomal proteins (RPs) and ribosomal RNAs as well as the cyclin-dependent kinase (CDK) inhibitor p16INK4A was increased, with a corresponding reduction of H4K20me1 at each locus. As a result, the loss of SETD8 concurrently stimulated nucleolar function and retinoblastoma protein-mediated mitochondrial metabolism. In conclusion, our data demonstrate that SETD8 acts as a barrier to prevent cellular senescence through chromatin-mediated regulation of senescence-associated metabolic remodeling.


Assuntos
Senescência Celular/fisiologia , Histona-Lisina N-Metiltransferase/metabolismo , Metiltransferases/metabolismo , Linhagem Celular , Nucléolo Celular/metabolismo , Cromatina/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Replicação do DNA/fisiologia , Regulação para Baixo/fisiologia , Regulação da Expressão Gênica/fisiologia , Histonas/metabolismo , Humanos , Lisina/metabolismo , Metilação , Mitocôndrias/metabolismo , RNA Ribossômico/metabolismo , Proteínas Ribossômicas/metabolismo
18.
PLoS One ; 12(1): e0169225, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28056052

RESUMO

Glucocorticoid signaling through the glucocorticoid receptor (GR) plays essential roles in the response to stress and in energy metabolism. This hormonal action is integrated to the transcriptional control of GR-target genes in a cell type-specific and condition-dependent manner. In the present study, we found that the GR regulates the angiopoietin-like 4 gene (ANGPTL4) in a CCCTC-binding factor (CTCF)-mediated chromatin context in the human hepatic HepG2 cells. There are at least four CTCF-enriched sites and two GR-binding sites within the ANGPTL4 locus. Among them, the major CTCF-enriched site is positioned near the ANGPTL4 enhancer that binds GR. We showed that CTCF is required for induction and subsequent silencing of ANGPTL4 expression in response to dexamethasone (Dex) and that transcription is diminished after long-term treatment with Dex. Although the ANGPTL4 locus maintains a stable higher-order chromatin conformation in the presence and absence of Dex, the Dex-bound GR activated transcription of ANGPTL4 but not that of the neighboring three genes through interactions among the ANGPTL4 enhancer, promoter, and CTCF sites. These results reveal that liganded GR spatiotemporally controls ANGPTL4 transcription in a chromosomal context.


Assuntos
Angiopoietinas/metabolismo , Cromatina/metabolismo , Hepatócitos/metabolismo , Receptores de Glucocorticoides/metabolismo , Proteínas Repressoras/metabolismo , Proteína 4 Semelhante a Angiopoietina , Angiopoietinas/genética , Fator de Ligação a CCCTC , Imunoprecipitação da Cromatina , Dexametasona/farmacologia , Elementos Facilitadores Genéticos/efeitos dos fármacos , Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Células Hep G2 , Humanos , Regiões Promotoras Genéticas/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , Ligação Proteica , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Glucocorticoides/genética
19.
Cancer Sci ; 107(9): 1187-92, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27375009

RESUMO

Epigenetic mechanisms underlie the phenotypic plasticity of cells, while aberrant epigenetic regulation through genetic mutations and/or misregulated expression of epigenetic factors leads to aberrant cell fate determination, which provides a foundation for oncogenic transformation. Lysine-specific demethylase-1 (LSD1, KDM1A) removes methyl groups from methylated proteins, including histone H3, and is frequently overexpressed in various types of solid tumors and hematopoietic neoplasms. While LSD1 is involved in a wide variety of normal physiological processes, including stem cell maintenance and differentiation, it is also a key player in oncogenic processes, including compromised differentiation, enhanced cell motility and metabolic reprogramming. Here, we present an overview of how LSD1 epigenetically regulates cellular plasticity through distinct molecular mechanisms in different biological contexts. Targeted inhibition of the context-dependent activities of LSD1 may provide a highly selective means to eliminate cancer cells.


Assuntos
Histona Desmetilases/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Fenótipo , Animais , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Metabolismo Energético , Epigênese Genética , Regulação Leucêmica da Expressão Gênica , Histona Desmetilases/química , Histona Desmetilases/genética , Histonas/metabolismo , Humanos , Metilação , Neoplasias/genética
20.
Sci Rep ; 6: 28324, 2016 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-27321866

RESUMO

The recent development and advancement of next-generation sequencing (NGS) technologies have enabled the characterization of the human genome at extremely high resolution. In the retrovirology field, NGS technologies have been applied to integration-site analysis and deep sequencing of viral genomes in combination with PCR amplification using virus-specific primers. However, virus-specific primers are not available for some epigenetic analyses, like chromatin immunoprecipitation sequencing (ChIP-seq) assays. Viral sequences are poorly detected without specific PCR amplification because proviral DNA is very scarce compared to human genomic DNA. Here, we have developed and evaluated the use of biotinylated DNA probes for the capture of viral genetic fragments from a library prepared for NGS. Our results demonstrated that viral sequence detection was hundreds or thousands of times more sensitive after enrichment, enabling us to reduce the economic burden that arises when attempting to analyze the epigenetic landscape of proviruses by NGS. In addition, the method is versatile enough to analyze proviruses that have mismatches compared to the DNA probes. Taken together, we propose that this approach is a powerful tool to clarify the mechanisms of transcriptional and epigenetic regulation of retroviral proviruses that have, until now, remained elusive.


Assuntos
Genoma Humano , Sequenciamento de Nucleotídeos em Larga Escala , Provírus/genética , Retroviridae/genética , Integração Viral , Linhagem Celular , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA