Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
Exp Eye Res ; 215: 108918, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34986369

RESUMO

Oxidative stress in the retinal pigment epithelium (RPE) can cause mitochondrial dysfunction and is likely a causative factor in the pathogenesis of age-related macular degeneration (AMD). Under oxidative stress conditions, some of the RPE cells become senescent and a contributory role for RPE senescence in AMD pathology has been proposed. The purpose of this study is to 1) characterize senescence in human RPE; 2) investigate the effect of an αB Crystallin chaperone peptide (mini Cry) in controlling senescence, in particular by regulating mitochondrial function and senescence-associated secretory phenotype (SASP) production and 3) develop mouse models for studying the role of RPE senescence in dry and nAMD. Senescence was induced in human RPE cells in two ways. First, subconfluent cells were treated with 0.2 µg/ml doxorubicin (DOX); second, subconfluent cells were treated with 500 µM H2O2. Senescence biomarkers (senescence-associated beta-galactosidase (SA-ßgal), p21, p16) and mitochondrial proteins (Fis1, DRP1, MFN2, PGC1-α, mtTFA) were analyzed in control and experimental groups. The effect of mini Cry on mitochondrial bioenergetics, glycolysis and SASP was determined. In vivo, retinal degeneration was induced by intravenous injection of NaIO3 (20 mg/kg) and subretinal fibrosis by laser-induced choroidal neovascularization. Increased SA-ßgal staining and p16 and p21 expression was observed after DOX- or H2O2-induced senescence and mini Cry significantly decreased senescence-positive cells. The expression of mitochondrial biogenesis proteins PGC-1 and mTFA increased with senescence, and mini Cry reduced expression significantly. Senescent RPE cells were metabolically active, as evidenced by significantly enhanced oxidative phosphorylation and anaerobic glycolysis, mini Cry markedly reduced rates of respiration and glycolysis. Senescent RPE cells maintain a proinflammatory phenotype characterized by significantly increased production of cytokines (IFN-Ë , TNF-α, IL1-α IL1-ß, IL-6, IL-8, IL-10), and VEGF-A; mini Cry significantly inhibited their secretion. We identified and localized senescent RPE cells for the first time in NaIO3-induced retinal degeneration and laser-induced subretinal fibrosis mouse models. We conclude that mini Cry significantly impairs stress-induced senescence by modulating mitochondrial biogenesis and fission proteins in RPE cells. Characterization of senescence could provide further understanding of the metabolic changes that accompany the senescent phenotype in ocular disease. Future studies in vivo may better define the role of senescence in AMD and the therapeutic potential of mini Cry as a senotherapeutic.


Assuntos
Degeneração Macular , Degeneração Retiniana , Animais , Senescência Celular , Modelos Animais de Doenças , Fibrose , Peróxido de Hidrogênio/farmacologia , Degeneração Macular/metabolismo , Camundongos , Estresse Oxidativo , Peptídeos/farmacologia , Degeneração Retiniana/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Cadeia B de alfa-Cristalina/genética
2.
Cells ; 10(11)2021 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-34831174

RESUMO

Retinal pigment epithelium (RPE) replacement therapy is evolving as a feasible approach to treat age-related macular degeneration (AMD). In many preclinical studies, RPE cells are transplanted as a cell suspension into immunosuppressed animal eyes and transplant effects have been monitored only short-term. We investigated the long-term effects of human Induced pluripotent stem-cell-derived RPE (iPSC-RPE) transplants in an immunodeficient Royal College of Surgeons (RCS) rat model, in which RPE dysfunction led to photoreceptor degeneration. iPSC-RPE cultured as a polarized monolayer on a nanoengineered ultrathin parylene C scaffold was transplanted into the subretinal space of 28-day-old immunodeficient RCS rat pups and evaluated after 1, 4, and 11 months. Assessment at early time points showed good iPSC-RPE survival. The transplants remained as a monolayer, expressed RPE-specific markers, performed phagocytic function, and contributed to vision preservation. At 11-months post-implantation, RPE survival was observed in only 50% of the eyes that were concomitant with vision preservation. Loss of RPE monolayer characteristics at the 11-month time point was associated with peri-membrane fibrosis, immune reaction through the activation of macrophages (CD 68 expression), and the transition of cell fate (expression of mesenchymal markers). The overall study outcome supports the therapeutic potential of RPE grafts despite the loss of some transplant benefits during long-term observations.


Assuntos
Células-Tronco Pluripotentes Induzidas/transplante , Epitélio Pigmentado da Retina/transplante , Animais , Biomarcadores/metabolismo , Humanos , Implantes Experimentais , Luz , Polímeros , Ratos , Colículos Superiores/efeitos da radiação , Análise de Sobrevida , Visão Ocular/efeitos da radiação , Xilenos
3.
Transl Vis Sci Technol ; 10(10): 13, 2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34613357

RESUMO

Purpose: To report 1-year follow-up of a phase 1/2a clinical trial testing a composite subretinal implant having polarized human embryonic stem cell (hESC)-derived retinal pigment epithelium (RPE) cells on an ultrathin parylene substrate in subjects with advanced non-neovascular age-related macular degeneration (NNAMD). Methods: The phase 1/2a clinical trial included 16 subjects in two cohorts. The main endpoint was safety assessed at 365 days using ophthalmic and systemic exams. Pseudophakic subjects with geographic atrophy (GA) and severe vision loss were eligible. Low-dose tacrolimus immunosuppression was utilized for 68 days in the peri-implantation period. The implant was delivered to the worst seeing eye with a custom subretinal insertion device in an outpatient setting. A data safety monitoring committee reviewed all results. Results: The treated eyes of all subjects were legally blind with a baseline best-corrected visual acuity (BCVA) of ≤ 20/200. There were no unexpected serious adverse events. Four subjects in cohort 1 had serious ocular adverse events, including retinal hemorrhage, edema, focal retinal detachment, or RPE detachment, which was mitigated in cohort 2 using improved hemostasis during surgery. Although this study was not powered to assess efficacy, treated eyes from four subjects showed an increased BCVA of >5 letters (6-13 letters). A larger proportion of treated eyes experienced a >5-letter gain when compared with the untreated eye (27% vs. 7%; P = not significant) and a larger proportion of nonimplanted eyes demonstrated a >5-letter loss (47% vs. 33%; P = not significant). Conclusions: Outpatient delivery of the implant can be performed routinely. At 1 year, the implant is safe and well tolerated in subjects with advanced dry AMD. Translational Relevance: This work describes the first clinical trial, to our knowledge, of a novel implant for advanced dry AMD.


Assuntos
Atrofia Geográfica , Transplante de Células-Tronco Hematopoéticas , Degeneração Macular , Seguimentos , Atrofia Geográfica/terapia , Humanos , Degeneração Macular/terapia , Acuidade Visual
4.
Sci Rep ; 11(1): 6286, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33737600

RESUMO

Age-related macular degeneration (AMD) is the primary cause of blindness in adults over 60 years of age, and clinical trials are currently assessing the therapeutic potential of retinal pigmented epithelial (RPE) cell monolayers on implantable scaffolds to treat this disease. However, challenges related to the culture, long-term storage, and long-distance transport of such implants currently limit the widespread use of adherent RPE cells as therapeutics. Here we report a xeno-free protocol to cryopreserve a confluent monolayer of clinical-grade, human embryonic stem cell-derived RPE cells on a parylene scaffold (REPS) that yields viable, polarized, and functional RPE cells post-thaw. Thawed cells exhibit ≥ 95% viability, have morphology, pigmentation, and gene expression characteristic of mature RPE cells, and secrete the neuroprotective protein, pigment epithelium-derived factor (PEDF). Stability under liquid nitrogen (LN2) storage has been confirmed through one year. REPS were administered immediately post-thaw into the subretinal space of a mammalian model, the Royal College of Surgeons (RCS)/nude rat. Implanted REPS were assessed at 30, 60, and 90 days post-implantation, and thawed cells demonstrate survival as an intact monolayer on the parylene scaffold. Furthermore, immunoreactivity for the maturation marker, RPE65, significantly increased over the post-implantation period in vivo, and cells demonstrated functional attributes similar to non-cryopreserved controls. The capacity to cryopreserve adherent cellular therapeutics permits extended storage and stable transport to surgical sites, enabling broad distribution for the treatment of prevalent diseases such as AMD.


Assuntos
Criopreservação/métodos , Células Epiteliais/transplante , Degeneração Macular/terapia , Epitélio Pigmentado da Retina/transplante , Manejo de Espécimes/métodos , Transplante de Células-Tronco/métodos , Animais , Diferenciação Celular , Linhagem Celular , Sobrevivência Celular , Modelos Animais de Doenças , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Proteínas do Olho/metabolismo , Células-Tronco Embrionárias Humanas/citologia , Humanos , Fatores de Crescimento Neural/metabolismo , Polímeros , Ratos , Ratos Nus , Medicina Regenerativa/métodos , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/metabolismo , Serpinas/metabolismo , Alicerces Teciduais , Resultado do Tratamento , Xilenos
5.
Front Neurosci ; 15: 780841, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35082594

RESUMO

Purpose: To investigate how modulating ocular sympathetic activity affects progression of choroidal neovascularization (CNV), a hallmark feature of wet age-related macular degeneration (AMD). Methods: In the first of two studies, Brown Norway rats underwent laser-induced CNV and were assigned to one of the following groups: daily eye drops of artificial tears (n = 10; control group); daily eye drops of the ß-adrenoreceptor agonist isoproterenol (n = 10); daily eye drops of the ß-adrenoreceptor antagonist propranolol (n = 10); sympathetic internal carotid nerve (ICN) transection 6 weeks prior to laser-induced CNV (n = 10). In the second study, rats underwent laser-induced CNV followed by ICN transection at different time points: immediately after the laser injury (n = 6), 7 days after the laser injury (n = 6), and sham surgery 7 days after the laser injury (n = 6; control group). All animals were euthanized 14 days after laser application. CNV development was quantified with fluorescein angiography and optical coherence tomography (in vivo), as well as lesion volume analysis using 3D confocal reconstruction (postmortem). Angiogenic growth factor protein levels in the choroid were measured with ELISA. Results: In the first study, blocking ocular sympathetic activity through pharmacological or surgical manipulation led to a 75% or 70% reduction in CNV lesion volume versus the control group, respectively (P < 0.001). Stimulating ocular sympathetic activity with isoproterenol also led to a reduction in lesion volume, but only by 27% versus controls (P < 0.05). VEGF protein levels in the choroid were elevated in the three treatment groups (P < 0.01). In the second study, fluorescein angiography and CNV lesion volume analysis indicated that surgically removing the ocular sympathetic supply inhibited progression of laser-induced CNV, regardless of whether ICN transection was performed on the same day or 7 days after the laser injury. Conclusion: Surgical and pharmacological block of ocular sympathetic activity can inhibit progression of CNV in a rat model. Therefore, electrical block of ICN activity could be a potential bioelectronic medicine strategy for treating wet AMD.

6.
Acta Neuropathol ; 139(5): 813-836, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32043162

RESUMO

Pericyte loss and deficient vascular platelet-derived growth factor receptor-ß (PDGFRß) signaling are prominent features of the blood-brain barrier breakdown described in Alzheimer's disease (AD) that can predict cognitive decline yet have never been studied in the retina. Recent reports using noninvasive retinal amyloid imaging, optical coherence tomography angiography, and histological examinations support the existence of vascular-structural abnormalities and vascular amyloid ß-protein (Aß) deposits in retinas of AD patients. However, the cellular and molecular mechanisms of such retinal vascular pathology were not previously explored. Here, by modifying a method of enzymatically clearing non-vascular retinal tissue and fluorescent immunolabeling of the isolated blood vessel network, we identified substantial pericyte loss together with significant Aß deposition in retinal microvasculature and pericytes in AD. Evaluation of postmortem retinas from a cohort of 56 human donors revealed an early and progressive decrease in vascular PDGFRß in mild cognitive impairment (MCI) and AD compared to cognitively normal controls. Retinal PDGFRß loss significantly associated with increased retinal vascular Aß40 and Aß42 burden. Decreased vascular LRP-1 and early apoptosis of pericytes in AD retina were also detected. Mapping of PDGFRß and Aß40 levels in pre-defined retinal subregions indicated that certain geometrical and cellular layers are more susceptible to AD pathology. Further, correlations were identified between retinal vascular abnormalities and cerebral Aß burden, cerebral amyloid angiopathy (CAA), and clinical status. Overall, the identification of pericyte and PDGFRß loss accompanying increased vascular amyloidosis in Alzheimer's retina implies compromised blood-retinal barrier integrity and provides new targets for AD diagnosis and therapy.


Assuntos
Doença de Alzheimer/patologia , Amiloidose/patologia , Encéfalo/patologia , Pericitos/patologia , Retina/patologia , Idoso , Idoso de 80 Anos ou mais , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Amiloidose/complicações , Barreira Hematoencefálica/patologia , Angiopatia Amiloide Cerebral/patologia , Cognição/fisiologia , Feminino , Humanos , Masculino
7.
Ophthalmol Retina ; 4(3): 264-273, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31786135

RESUMO

PURPOSE: To report the intraoperative methods and anatomic results for subretinal implantation of an investigational human embryonic stem cell-derived retinal pigment epithelium (RPE) monolayer seeded on a synthetic substrate (California Project to Cure Blindness Retinal Pigment Epithelium 1 [CPCB-RPE1]) in geographic atrophy (GA). DESIGN: Single-arm, open label, prospective, nonrandomized, Phase 1/2a study. PARTICIPANTS: Advanced non-neovascular age-related macular degeneration (NNAMD). METHODS: The worse-seeing eye (≤20/200) of each subject underwent subretinal implantation of a single 3.5×6.25 mm CPCB-RPE1 implant with a preplanned primary end point of safety and efficacy at 365 days. Commercially available 23-gauge vitrectomy equipment, custom surgical forceps, and operating microscope with or without intraoperative OCT (iOCT) were used. Exact Wilcoxon rank-sum tests and Spearman rank correlation coefficients were used to assess the association of the percentage of the GA area covered by the implant with patient and surgery characteristics. The partial Spearman correlation coefficient was calculated for the correlation between duration of surgery and baseline GA size after adjustment for surgeon experience. MAIN OUTCOME MEASURES: Intraoperative exploratory measures are reported, including area of GA covered by implant, subretinal position of implant, duration of surgery, and incidence of adverse events. Operative recordings and reports were used to determine exploratory outcome measures. RESULTS: Sixteen subjects were enrolled with a median age of 78 years (range, 69-85 years). Median duration of the surgery for all subjects was 160 minutes (range, 121-466 minutes). Intraoperative OCT was used to guide subretinal placement in 9 cases. Intraoperative OCT was potentially useful in identifying pathology not evident with standard intraoperative visualization. Median GA area at baseline was 13.8 mm2 (range, 6.0-46.4 mm2), and median GA area left uncovered by the implant was 1.7 mm2 (range, 0-20.4 mm2). On average, 86.9% of the baseline GA area was covered by the implant. In 5 subjects, >90% of the GA area was covered. Baseline GA size was inversely correlated with percentage of GA area covered by the implant (rs=-0.72; P = 0.002). No unanticipated serious adverse events related to the implant or surgery were reported. CONCLUSIONS: Surgical implantation of CPCB-RPE1 targeted to the area of GA in subjects with advanced NNAMD is feasible in an outpatient setting. Intraoperative OCT is not necessary but potentially useful in identifying subretinal pathology and confirming implant location.


Assuntos
Atrofia Geográfica/cirurgia , Células-Tronco Embrionárias Humanas/citologia , Epitélio Pigmentado da Retina/transplante , Transplante de Células-Tronco/métodos , Idoso , Idoso de 80 Anos ou mais , Feminino , Angiofluoresceinografia/métodos , Fundo de Olho , Atrofia Geográfica/patologia , Humanos , Masculino , Estudos Prospectivos , Epitélio Pigmentado da Retina/citologia , Tomografia de Coerência Óptica/métodos
8.
Nanomedicine ; 24: 102111, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31655204

RESUMO

Humanin (HN) is a hydrophobic 24-amino acid peptide derived from mitochondrial DNA that modulates cellular responses to oxidative stress and protects human retinal pigment epithelium (RPE) cells from apoptosis. To solubilize HN, this report describes two genetically-encoded fusions between HN and elastin-like polypeptides (ELP). ELPs provide steric stabilization and/or thermo-responsive phase separation. Fusions were designed to either remain soluble or phase separate at the physiological temperature of the retina. Interestingly, the soluble fusion assembles stable colloids with a hydrodynamic radius of 39.1 nm at 37°C. As intended, the thermo-responsive fusion forms large coacervates (>1,000 nm) at 37°C. Both fusions bind human RPE cells and protect against oxidative stress-induction of apoptosis (TUNEL, caspase-3 activation). Their activity is mediated through STAT3; furthermore, STAT3 inhibition eliminates their protection. These findings suggest that HN polypeptides may facilitate cellular delivery of biodegradable nanoparticles with potential protection against age-related diseases, including macular degeneration.


Assuntos
Elastina , Células Epiteliais/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Nanopartículas/química , Estresse Oxidativo/efeitos dos fármacos , Peptídeos , Epitélio Pigmentado da Retina/metabolismo , Apoptose/efeitos dos fármacos , Células Cultivadas , Elastina/química , Elastina/farmacologia , Células Epiteliais/patologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/farmacologia , Degeneração Macular/metabolismo , Degeneração Macular/patologia , Peptídeos/química , Peptídeos/farmacologia , Epitélio Pigmentado da Retina/patologia
9.
Invest Ophthalmol Vis Sci ; 60(13): 4303-4309, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31618767

RESUMO

Purpose: To investigate specific effects of denervation and stimulation of the internal carotid nerve (ICN) on the choroid and retina. Methods: Female Sprague Dawley rats underwent unilateral ICN transection (n = 20) or acute ICN electrical stimulation (n = 7). Rats in the denervation group were euthanized 6 weeks after nerve transection, and eyes were analyzed for changes in choroidal vascularity (via histomorphometry) or angiogenic growth factors and inflammatory markers (via ELISA). Rats in the stimulation group received acute ICN electrical stimulation with a bipolar cuff electrode over a range of stimulus amplitudes, frequencies, and pulse widths. Choroidal blood flow and pupil diameter were monitored before, during, and after stimulation. Results: Six weeks after unilateral ICN transection, sympathectomized choroids exhibited increased vascularity, defined as the percentage of choroidal surface area occupied by blood vessel lumina. Vascular endothelial growth factor (VEGF) and VEGF receptor-2 (VEGFR-2) protein levels in denervated choroids were 61% and 124% higher than in contralateral choroids, respectively. TNF-α levels in denervated retinas increased by 3.3-fold relative to levels in contralateral retinas. In animals undergoing acute ICN electrical stimulation, mydriasis and reduced choroidal blood flow were observed in the ipsilateral eye. The magnitude of the reduction in blood flow correlated positively with stimulus frequency. Conclusions: Modulation of ICN activity reveals a potential role of the ocular sympathetic system in regulating endpoints related to neovascular diseases of the eye.


Assuntos
Artéria Carótida Interna/inervação , Corioide/irrigação sanguínea , Simpatectomia , Sistema Nervoso Simpático/cirurgia , Animais , Biomarcadores/metabolismo , Corioide/metabolismo , Estimulação Elétrica , Ensaio de Imunoadsorção Enzimática , Feminino , Pupila/fisiologia , Ratos , Ratos Sprague-Dawley , Retina/metabolismo , Gânglio Cervical Superior/fisiologia , Sistema Nervoso Simpático/fisiologia , Fator de Necrose Tumoral alfa/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
10.
Int J Mol Sci ; 20(19)2019 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-31569695

RESUMO

Age-related macular degeneration (AMD) is a leading cause of blindness in the developed world. The retinal pigment epithelium (RPE) is a critical site of pathology in AMD. Oxidative stress plays a key role in the development of AMD. We generated a chimeric high-density lipoprotein (HDL), mimetic peptide named HM-10/10, with anti-oxidant properties and investigated its potential for the treatment of retinal disease using cell culture and animal models of RPE and photoreceptor (PR) degeneration. Treatment with HM-10/10 peptide prevented human fetal RPE cell death caused by tert-Butyl hydroperoxide (tBH)-induced oxidative stress and sodium iodate (NaIO3), which causes RPE atrophy and is a model of geographic atrophy in mice. We also show that HM-10/10 peptide ameliorated photoreceptor cell death and significantly improved retinal function in a mouse model of N-methyl-N-nitrosourea (MNU)-induced PR degeneration. Our results demonstrate that HM-10/10 protects RPE and retina from oxidant injury and can serve as a potential therapeutic agent for the treatment of retinal degeneration.


Assuntos
Lipoproteínas HDL/metabolismo , Peptídeos/farmacologia , Células Fotorreceptoras/efeitos dos fármacos , Células Fotorreceptoras/metabolismo , Degeneração Retiniana/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Animais , Apoptose , Caspase 3/metabolismo , Caspase 7/metabolismo , Modelos Animais de Doenças , Iodatos , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Degeneração Retiniana/diagnóstico , Degeneração Retiniana/etiologia , Epitélio Pigmentado da Retina/patologia , Tomografia de Coerência Óptica
11.
Invest Ophthalmol Vis Sci ; 60(2): 500-516, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30707752

RESUMO

Purpose: To characterize two mitochondrial membrane transporters 2-oxoglutarate (OGC) and dicarboxylate (DIC) in human RPE (hRPE) and to elucidate their role in the regulation of mitochondrial glutathione (mGSH) uptake and cell death in oxidative stress. Methods: The localization of OGC and DIC proteins in confluent hRPE, polarized hRPE monolayers and mouse retina was assessed by immunoblotting and confocal microscopy. Time- and dose-dependent expression of the two carriers were determined after treatment of hRPE with H2O2, phenyl succinate (PS), and butyl malonate (BM), respectively, for 24 hours. The effect of inhibition of OGC and DIC on apoptosis (TUNEL), mGSH, and mtDNA was determined. Silencing of OGC by siRNA knockdown on RPE cell death was studied. Kinetics of caspase 3/7 activation with OGC and DIC inhibitors and effect of cotreatment with glutathione monoethyl ester (GSH-MEE) was determined using the IncuCyte live cell imaging. Results: OGC and DIC are expressed in hRPE mitochondria and exhibited a time- and dose-dependent decrease with stress. Pharmacologic inhibition caused a decrease in OGC and DIC in mitochondria without changes in mtDNA and resulted in increased apoptosis and mGSH depletion. GSH-MEE prevented apoptosis through restoration of mGSH. OGC siRNA exacerbated apoptotic cell death in stressed RPE which was inhibited by increased mGSH from GSH-MEE cotreatment. Conclusions: Characterization and mechanism of action of two carrier proteins of mGSH uptake in RPE are reported. Regulation of OGC and DIC will be of value in devising therapeutic strategies for retinal disorders such as AMD.


Assuntos
Transportadores de Ácidos Dicarboxílicos/metabolismo , Glutationa/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Mitocôndrias/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Animais , Apoptose/efeitos dos fármacos , Transporte Biológico , Western Blotting , Proteínas de Transporte/metabolismo , Células Cultivadas , DNA Mitocondrial/metabolismo , Transportadores de Ácidos Dicarboxílicos/genética , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica/fisiologia , Humanos , Peróxido de Hidrogênio/farmacologia , Marcação In Situ das Extremidades Cortadas , Masculino , Malonatos/farmacologia , Proteínas de Membrana Transportadoras/genética , Camundongos , Microscopia Confocal , Estresse Oxidativo/efeitos dos fármacos , Reação em Cadeia da Polimerase em Tempo Real , Succinatos/farmacologia , Fatores de Tempo
12.
Retina ; 39(2): 265-273, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29190236

RESUMO

PURPOSE: We sought to characterize the angiofibrotic and apoptotic effects of vascular endothelial growth factor (VEGF)-inhibition on fibrovascular epiretinal membranes in eyes with traction retinal detachment because of proliferative diabetic retinopathy. METHODS: Membranes were excised from 20 eyes of 19 patients (10 randomized to intravitreal bevacizumab, 10 controls) at vitrectomy. Membranes were stained with antibodies targeting connective tissue growth factor (CTGF) or VEGF and colabeled with antibodies directed against endothelial cells (CD31), myofibroblasts, or retinal pigment epithelium markers. Quantitative and colocalization analyses of antibody labeling were obtained through immunofluorescence confocal microscopy. Masson trichrome staining, cell counting of hematoxylin and eosin sections, and terminal dUTP nick-end labeling staining were performed. RESULTS: High levels of fibrosis were observed in both groups. Cell apoptosis was higher (P = 0.05) in bevacizumab-treated membranes compared with controls. The bevacizumab group had a nonsignificant reduction in colocalization in CD31-CTGF and cytokeratin-VEGF studies compared with controls. Vascular endothelial growth factor in extracted membranes was positively correlated with vitreous levels of VEGF; CTGF in extracted membranes was negatively correlated with vitreous levels of CTGF. CONCLUSION: Bevacizumab suppresses vitreous VEGF levels, but does not significantly alter VEGF or CTGF in diabetic membranes that may be explained by high baseline levels of fibrosis. Bevacizumab may cause apoptosis within fibrovascular membranes.


Assuntos
Apoptose , Bevacizumab/administração & dosagem , Retinopatia Diabética/patologia , Membrana Epirretiniana/cirurgia , Retina/patologia , Vitrectomia/métodos , Actinas/biossíntese , Inibidores da Angiogênese/administração & dosagem , Proliferação de Células , Fator de Crescimento do Tecido Conjuntivo/biossíntese , Retinopatia Diabética/complicações , Retinopatia Diabética/tratamento farmacológico , Membrana Epirretiniana/complicações , Membrana Epirretiniana/patologia , Fibrose/patologia , Humanos , Injeções Intravítreas , Queratinas/biossíntese , Molécula-1 de Adesão Celular Endotelial a Plaquetas/biossíntese , Estudos Prospectivos , Receptores de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Retina/metabolismo , Fator A de Crescimento do Endotélio Vascular/biossíntese
13.
Graefes Arch Clin Exp Ophthalmol ; 256(11): 2113-2125, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30215097

RESUMO

PURPOSE: To create new immunodeficient Royal College of Surgeons (RCS) rats by introducing the defective MerTK gene into athymic nude rats. METHODS: Female homozygous RCS (RCS-p+/RCS-p+) and male nude rats (Hsd:RH-Foxn1mu, mutation in the foxn1 gene; no T cells) were crossed to produce heterozygous F1 progeny. Double homozygous F2 progeny obtained by crossing the F1 heterozygotes was identified phenotypically (hair loss) and genotypically (RCS-p+ gene determined by PCR). Retinal degenerative status was confirmed by optical coherence tomography (OCT) imaging, electroretinography (ERG), optokinetic (OKN) testing, superior colliculus (SC) electrophysiology, and by histology. The effect of xenografts was assessed by transplantation of human embryonic stem cell-derived retinal pigment epithelium (hESC-RPE) and human-induced pluripotent stem cell-derived RPE (iPS-RPE) into the eye. Morphological analysis was conducted based on hematoxylin and eosin (H&E) and immunostaining. Age-matched pigmented athymic nude rats were used as control. RESULTS: Approximately 6% of the F2 pups (11/172) were homozygous for RCS-p+ gene and Foxn1mu gene. Homozygous males crossed with heterozygous females resulted in 50% homozygous progeny for experimentation. OCT imaging demonstrated significant loss of retinal thickness in homozygous rats. H&E staining showed photoreceptor thickness reduced to 1-3 layers at 12 weeks of age. Progressive loss of visual function was evidenced by OKN testing, ERG, and SC electrophysiology. Transplantation experiments demonstrated survival of human-derived cells and absence of apparent immune rejection. CONCLUSIONS: This new rat animal model developed by crossing RCS rats and athymic nude rats is suitable for conducting retinal transplantation experiments involving xenografts.


Assuntos
Modelos Animais de Doenças , Células-Tronco Embrionárias Humanas/transplante , Síndromes de Imunodeficiência/terapia , Células-Tronco Pluripotentes Induzidas/transplante , Distrofias Retinianas/terapia , Epitélio Pigmentado da Retina/transplante , Animais , Sobrevivência Celular , Eletrorretinografia , Feminino , Técnicas de Genotipagem , Sobrevivência de Enxerto/fisiologia , Células-Tronco Embrionárias Humanas/fisiologia , Humanos , Síndromes de Imunodeficiência/diagnóstico , Síndromes de Imunodeficiência/fisiopatologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Masculino , Fenótipo , Ratos , Ratos Nus , Retina/fisiopatologia , Distrofias Retinianas/diagnóstico , Distrofias Retinianas/fisiopatologia , Epitélio Pigmentado da Retina/fisiologia , Tomografia de Coerência Óptica , c-Mer Tirosina Quinase/genética
14.
Ophthalmic Surg Lasers Imaging Retina ; 49(9): e65-e74, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30222821

RESUMO

BACKGROUND AND OBJECTIVE: To evaluate a stereological method in optical coherence tomography (OCT) as an in vivo volume measurement of laser-induced choroidal neovascularization (L-CNV) lesion size. PATIENTS AND METHODS: Laser photocoagulation was applied in rats to rupture Bruch's membrane and induce L-CNV. In vivo OCT images of neovascular lesions were acquired with a spectral-domain OCT system at days 0, 3, 7, 10, and 14 after laser surgery. A stereological image-processing method was used to calculate lesion volumes from the OCT images. Rats were euthanized at day 14, and confocal microscopy was used to obtain accurate volume measurements of the lesions ex vivo. Lesion sizes calculated from OCT and confocal were compared. RESULTS: In vivo assessment by OCT allowed three distinct stages of L-CNV to be visualized: the initial early reaction, neovascular proliferation, and regression. At day 14, correlations between OCT and confocal lesion volumes showed a positive association (Pearson's r = 0.50, P < .01). Except for the largest lesions, volumes measured by OCT were statistically similar to those measured by the confocal gold standard (P = .90). CONCLUSION: The stereological approach used to measure neovascular lesion volume from OCT images offers an accurate means to track L-CNV lesion size in vivo. [Ophthalmic Surg Lasers Imaging Retina. 2018;49:e65-e74.].


Assuntos
Corioide/irrigação sanguínea , Neovascularização de Coroide/diagnóstico , Terapia com Luz de Baixa Intensidade/efeitos adversos , Tomografia de Coerência Óptica/métodos , Animais , Neovascularização de Coroide/etiologia , Modelos Animais de Doenças , Angiofluoresceinografia/métodos , Fundo de Olho , Degeneração Macular/diagnóstico , Degeneração Macular/cirurgia , Masculino , Ratos , Ratos Endogâmicos BN
15.
Int J Cancer ; 143(11): 2932-2942, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29978915

RESUMO

We previously described an in vitro model in which serous ovarian cystadenomas were transfected with SV40 large T antigen, resulting in loss of RB and P53 functions and thus mimicking genetic defects present in early high-grade serous extra-uterine Müllerian (traditionally called high-grade serous ovarian) carcinomas including those associated with the BRCA1 mutation carrier state. We showed that replicative aging in this cell culture model leads to a mitotic arrest at the spindle assembly checkpoint. Here we show that this arrest is due to a reduction in microtubule anchoring that coincides with decreased expression of the BUB1 kinase and of the phosphorylated form of its substrate, BUB3. The ensuing prolonged mitotic arrest leads to cohesion fatigue resulting in cell death or, in cells that recover from this arrest, in cytokinesis failure and polyploidy. Down-regulation of BRCA1 to levels similar to those present in BRCA1 mutation carriers leads to increased and uncontrolled microtubule anchoring to the kinetochore resulting in overcoming the spindle assembly checkpoint. Progression to anaphase under those conditions is associated with formation of chromatin bridges between chromosomal plates due to abnormal attachments to the kinetochore, significantly increasing the risk of cytokinesis failure. The dependence of this scenario on accelerated replicative aging can, at least in part, account for the site specificity of the cancers associated with the BRCA1 mutation carrier state, as epithelia of the mammary gland and of the reproductive tract are targets of cell-nonautonomous consequences of this carrier state on cellular proliferation associated with menstrual cycle progressions.


Assuntos
Proteína BRCA1/genética , Cistadenoma/genética , Citocinese/genética , Neoplasias Ovarianas/genética , Transdução de Sinais/genética , Proteína Supressora de Tumor p53/genética , Proteínas de Ciclo Celular/genética , Cromossomos/genética , Feminino , Humanos , Microtúbulos/genética , Mitose/genética , Poliploidia , Fuso Acromático/genética
16.
J Control Release ; 283: 94-104, 2018 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-29778783

RESUMO

Age-related macular degeneration (AMD) is the leading cause of severe and irreversible central vision loss, and the primary site of AMD pathology is the retinal pigment epithelium (RPE). Geographic atrophy (GA) is an advanced form of AMD characterized by extensive RPE cell loss, subsequent degeneration of photoreceptors, and thinning of retina. This report describes the protective potential of a peptide derived from the αB crystallin protein using a sodium iodate (NaIO3) induced mouse model of GA. Systemic NaIO3 challenge causes degeneration of the RPE and neighboring photoreceptors, which have similarities to retinas of GA patients. αB crystallin is an abundant ocular protein that maintains ocular clarity and retinal homeostasis, and a small peptide from this protein (mini cry) displays neuroprotective properties. To retain this peptide for longer in the vitreous, mini cry was fused to an elastin-like polypeptide (ELP). A single intra-vitreal treatment by this crySI fusion significantly inhibits retinal degeneration in comparison to free mini cry. While mini cry is cleared from the eye with a mean residence time of 0.4 days, crySI is retained with a mean residence time of 3.0 days; furthermore, fundus photography reveals evidence of retention at two weeks. Unlike the free mini cry, crySI protects the RPE against NaIO3 challenge for at least two weeks after administration. CrySI also inhibits RPE apoptosis and caspase-3 activation and protects the retina from cell death up to 1-month post NaIO3 challenge. These results show that intra-ocular ELP-linked peptides such as crySI hold promise as protective agents to prevent RPE atrophy and progressive retinal degeneration in AMD.


Assuntos
Elastina/administração & dosagem , Degeneração Macular/tratamento farmacológico , Fármacos Neuroprotetores/administração & dosagem , Peptídeos/administração & dosagem , Cadeia B de alfa-Cristalina/administração & dosagem , Animais , Modelos Animais de Doenças , Elastina/farmacocinética , Olho/efeitos dos fármacos , Olho/metabolismo , Olho/patologia , Injeções Intravítreas , Iodatos , Degeneração Macular/induzido quimicamente , Degeneração Macular/metabolismo , Degeneração Macular/patologia , Camundongos , Neuroproteção , Fármacos Neuroprotetores/farmacocinética , Peptídeos/farmacocinética , Cadeia B de alfa-Cristalina/farmacocinética
17.
Sci Transl Med ; 10(435)2018 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-29618560

RESUMO

Retinal pigment epithelium (RPE) dysfunction and loss are a hallmark of non-neovascular age-related macular degeneration (NNAMD). Without the RPE, a majority of overlying photoreceptors ultimately degenerate, leading to severe, progressive vision loss. Clinical and histological studies suggest that RPE replacement strategies may delay disease progression or restore vision. A prospective, interventional, U.S. Food and Drug Administration-cleared, phase 1/2a study is being conducted to assess the safety and efficacy of a composite subretinal implant in subjects with advanced NNAMD. The composite implant, termed the California Project to Cure Blindness-Retinal Pigment Epithelium 1 (CPCB-RPE1), consists of a polarized monolayer of human embryonic stem cell-derived RPE (hESC-RPE) on an ultrathin, synthetic parylene substrate designed to mimic Bruch's membrane. We report an interim analysis of the phase 1 cohort consisting of five subjects. Four of five subjects enrolled in the study successfully received the composite implant. In all implanted subjects, optical coherence tomography imaging showed changes consistent with hESC-RPE and host photoreceptor integration. None of the implanted eyes showed progression of vision loss, one eye improved by 17 letters and two eyes demonstrated improved fixation. The concurrent structural and functional findings suggest that CPCB-RPE1 may improve visual function, at least in the short term, in some patients with severe vision loss from advanced NNAMD.


Assuntos
Degeneração Macular/terapia , Células Cultivadas , Feminino , Atrofia Geográfica/terapia , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/fisiologia , Humanos , Masculino , Estudos Prospectivos , Epitélio Pigmentado da Retina/citologia , Transplante de Células-Tronco , Tomografia de Coerência Óptica
18.
Artigo em Inglês | MEDLINE | ID: mdl-29093829

RESUMO

BACKGROUND: Subretinal cell transplantation is a challenging surgical maneuver. This paper describes the preliminary findings of a new tissue injector for subretinal implantation of an ultrathin non-absorbable substrate seeded with human embryonic stem cell-derived retinal pigment epithelium (hESC-RPE). METHODS: Ultrathin Parylene-C substrates measuring 3.5 mm × 6.0 mm seeded with hESC-RPE (implant referred to as CPCB-RPE1) were implanted into the subretinal space of 12 Yucatan minipigs. Animals were euthanized immediately after the procedure and underwent spectral domain optical coherence tomography (SD-OCT) and histological analysis to assess the subretinal placement of the implant. Evaluation of the hESC-RPE cells seeded on the substrate was carried out before and after implantation using standard cell counting techniques. RESULTS: The tissue injector delivered the CPCB-RPE1 implant through a 1.5 mm sclerotomy and a 1.0-1.5 mm retinectomy. SD-OCT scans and histological examination revealed that substrates were precisely placed in the subretinal space, and that the hESC-RPE cell monolayer continued to cover the surface of the substrate after the surgical procedure. CONCLUSION: This innovative tissue injector was able to efficiently deliver the implant in the subretinal space of Yucatan minipigs, preventing significant hESC-RPE cell loss, minimizing tissue trauma, surgical complications and postoperative inflammation.

19.
PLoS One ; 11(10): e0165150, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27783653

RESUMO

Humanin (HN) is a small mitochondrial-encoded peptide with neuroprotective properties. We have recently shown protection of retinal pigmented epithelium (RPE) cells by HN in oxidative stress; however, the effect of HN on endoplasmic reticulum (ER) stress has not been evaluated in any cell type. Our aim here was to study the effect of HN on ER stress-induced apoptosis in RPE cells with a specific focus on ER-mitochondrial cross-talk. Dose dependent effects of ER stressors (tunicamycin (TM), brefeldin A, and thapsigargin) were studied after 12 hr of treatment in confluent primary human RPE cells with or without 12 hr of HN pretreatment (1-20 µg/mL). All three ER stressors induced RPE cell apoptosis in a dose dependent manner. HN pretreatment significantly decreased the number of apoptotic cells with all three ER stressors in a dose dependent manner. HN pretreatment similarly protected U-251 glioma cells from TM-induced apoptosis in a dose dependent manner. HN pretreatment significantly attenuated activation of caspase 3 and ER stress-specific caspase 4 induced by TM. TM treatment increased mitochondrial superoxide production, and HN co-treatment resulted in a decrease in mitochondrial superoxide compared to TM treatment alone. We further showed that depleted mitochondrial glutathione (GSH) levels induced by TM were restored with HN co-treatment. No significant changes were found for the expression of several antioxidant enzymes between TM and TM plus HN groups except for the expression of glutamylcysteine ligase catalytic subunit (GCLC), the rate limiting enzyme required for GSH biosynthesis, which is upregulated with TM and TM+HN treatment. These results demonstrate that ER stress promotes mitochondrial alterations in RPE that lead to apoptosis. We further show that HN has a protective effect against ER stress-induced apoptosis by restoring mitochondrial GSH. Thus, HN should be further evaluated for its therapeutic potential in disorders linked to ER stress.


Assuntos
Apoptose/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Glutationa/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/farmacologia , Mitocôndrias/efeitos dos fármacos , Epitélio Pigmentado da Retina/citologia , Regulação para Cima/efeitos dos fármacos , Caspase 3/metabolismo , Caspases Iniciadoras/metabolismo , Linhagem Celular Tumoral , Citoproteção/efeitos dos fármacos , Chaperona BiP do Retículo Endoplasmático , Ativação Enzimática/efeitos dos fármacos , Glutamato-Cisteína Ligase/metabolismo , Proteínas de Choque Térmico/metabolismo , Humanos , Mitocôndrias/metabolismo , Superóxidos/metabolismo , Fator de Transcrição CHOP/metabolismo
20.
Invest Ophthalmol Vis Sci ; 57(11): 4558-65, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27588614

RESUMO

PURPOSE: To assess the ability of trabecular micro-bypass stents to improve aqueous humor outflow (AHO) in regions initially devoid of AHO as assessed by aqueous angiography. METHODS: Enucleated human eyes (14 total from 7 males and 3 females [ages 52-84]) were obtained from an eye bank within 48 hours of death. Eyes were oriented by inferior oblique insertion, and aqueous angiography was performed with indocyanine green (ICG; 0.4%) or fluorescein (2.5%) at 10 mm Hg. With an angiographer, infrared and fluorescent images were acquired. Concurrent anterior segment optical coherence tomography (OCT) was performed, and fixable fluorescent dextrans were introduced into the eye for histologic analysis of angiographically positive and negative areas. Experimentally, some eyes (n = 11) first received ICG aqueous angiography to determine angiographic patterns. These eyes then underwent trabecular micro-bypass sham or stent placement in regions initially devoid of angiographic signal. This was followed by fluorescein aqueous angiography to query the effects. RESULTS: Aqueous angiography in human eyes yielded high-quality images with segmental patterns. Distally, angiographically positive but not negative areas demonstrated intrascleral lumens on OCT images. Aqueous angiography with fluorescent dextrans led to their trapping in AHO pathways. Trabecular bypass but not sham in regions initially devoid of ICG aqueous angiography led to increased aqueous angiography as assessed by fluorescein (P = 0.043). CONCLUSIONS: Using sequential aqueous angiography in an enucleated human eye model system, regions initially without angiographic flow or signal could be recruited for AHO using a trabecular bypass stent.


Assuntos
Humor Aquoso/metabolismo , Angiofluoresceinografia/métodos , Verde de Indocianina/farmacocinética , Malha Trabecular/diagnóstico por imagem , Idoso , Idoso de 80 Anos ou mais , Humor Aquoso/diagnóstico por imagem , Cadáver , Corantes/farmacocinética , Enucleação Ocular , Feminino , Fundo de Olho , Glaucoma/diagnóstico , Glaucoma/metabolismo , Glaucoma/cirurgia , Humanos , Masculino , Pessoa de Meia-Idade , Stents , Tomografia de Coerência Óptica , Malha Trabecular/metabolismo , Malha Trabecular/cirurgia , Gravação em Vídeo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA