Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Transl Lung Cancer Res ; 12(6): 1221-1235, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37425408

RESUMO

Background: Certain variants of NHL repeat (named after NCL-1, HT2A and LIN-41)-containing protein 2 (NHLRC2) gene have been linked to severe fibrotic interstitial lung disease in children. The aim of the current study was to evaluate the expression of NHLRC2 in lung cell and tissue samples from patients with lung adenocarcinoma (ADC) and squamous cell carcinoma (SCC). Methods: The expression of NHLRC2 in lung tissue samples was studied by immunohistochemistry (102 ADC, 111 SCC), mRNA in situ hybridization (4 ADC, 3 SCC), and Western blot analysis (3 ADC, 2 SCC). The immunohistochemical NHLRC2 expression was measured by image analysis software and the percentage of NHLRC2-positive cancer cells was evaluated by semiquantitative analysis. The immunohistochemical results of NHLRC2 were compared with the clinical and histological characteristics of the patients. NHLRC2 protein levels in primary stromal and epithelial lung cancer cell lines were measured by Western blot analysis. Results: NHLRC2 was mainly expressed in cancer cells and inflammatory cells within the tumor. The NHLRC2 expression evaluated by image analysis method was significantly higher in ADC compared with that in SCC (P<0.001). High NHLRC2 expression was associated with reduced disease specific survival (P=0.002), overall survival (P=0.001), and high mitotic activity (P=0.042) in ADC. Additionally, the proportion of NHLRC2-positive cancer cells analyzed by the semiquantitative method was significantly higher in ADC than in SCC (P<0.001). Conclusions: NHLRC2 expression was higher in lung ADC than in SCC and its expression was associated with poor survival in ADC patients. Further studies are required to clarify the pathogenetic role of NHLRC2 in lung cancer.

2.
Front Neurosci ; 17: 1123327, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37179546

RESUMO

Purpose: FINCA disease (Fibrosis, Neurodegeneration and Cerebral Angiomatosis, OMIM 618278) is an infantile-onset neurodevelopmental and multiorgan disease. Since our initial report in 2018, additional patients have been described. FINCA is the first human disease caused by recessive variants in the highly conserved NHLRC2 gene. Our previous studies have shown that Nhlrc2-null mouse embryos die during gastrulation, indicating the essential role of the protein in embryonic development. Defect in NHLRC2 leads to cerebral neurodegeneration and severe pulmonary, hepatic and cardiac fibrosis. Despite having a structure suggestive of an enzymatic role and the clinical importance of NHLRC2 in multiple organs, the specific physiological role of the protein is unknown. Methods: The clinical histories of five novel FINCA patients diagnosed with whole exome sequencing were reviewed. Segregation analysis of the biallelic, potentially pathogenic NHLRC2 variants was performed using Sanger sequencing. Studies on neuropathology and NHLRC2 expression in different brain regions were performed on autopsy samples of three previously described deceased FINCA patients. Results: One patient was homozygous for the pathogenic variant c.442G > T, while the other four were compound heterozygous for this variant and two other pathogenic NHLRC2 gene variants. All five patients presented with multiorgan dysfunction with neurodevelopmental delay, recurrent infections and macrocytic anemia as key features. Interstitial lung disease was pronounced in infancy but often stabilized. Autopsy samples revealed widespread, albeit at a lower intensity than the control, NHLRC2 expression in the brain. Conclusion: This report expands on the characteristic clinical features of FINCA disease. Presentation is typically in infancy, and although patients can live to late adulthood, the key clinical and histopathological features are fibrosis, infection susceptibility/immunodeficiency/intellectual disability, neurodevelopmental disorder/neurodegeneration and chronic anemia/cerebral angiomatosis (hence the acronym FINCA) that enable an early diagnosis confirmed by genetic investigations.

3.
Pharmacogenomics J ; 23(5): 105-111, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37138020

RESUMO

Hepatotoxicity is a frequent complication during maintenance therapy of acute lymphoblastic leukemia (ALL) with 6-mercaptopurine and methotrexate. Elevated levels of methylated 6-mercaptopurine metabolites (MeMP) are associated with hepatotoxicity. However, not all mechanisms are known that lead to liver failure in patients with ALL. Variants in the POLG gene, which encodes the catalytic subunit of mitochondrial DNA polymerase gamma (POLG1), have been related to drug-induced hepatotoxicity, for example, by sodium valproate. The association of common POLG variants with hepatotoxicity during maintenance therapy was studied in 34 patients with childhood ALL. Of the screened POLG variants, four different variants were detected in 12 patients. One patient developed severe hepatotoxicity without elevated MeMP levels and harbored a heterozygous POLG p.G517V variant, which was not found in the other patients.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Doença Hepática Induzida por Substâncias e Drogas/genética , DNA Polimerase gama , Mercaptopurina/efeitos adversos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Ácido Valproico/efeitos adversos
4.
Respir Res ; 23(1): 206, 2022 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-35964085

RESUMO

BACKGROUND: Variants of NHL repeat-containing protein 2 (NHLRC2) have been associated with severe fibrotic interstitial lung disease in early childhood and NHLRC2 has been listed as a differentially expressed gene between rapidly and slowly progressing idiopathic pulmonary fibrosis (IPF) patients. However, its cell type-specific localization in human lung tissue is unknown. The aim of this study was to evaluate NHLRC2 mRNA and protein expression in different cell types of lung tissue samples and to investigate the effect of transforming growth factor (TGF)-ß1 exposure on NHLRC2 expression in vitro. METHODS: The NHLRC2 expression in lung tissue samples was studied by immunohistochemistry (50 IPF, 10 controls) and mRNA in situ hybridization (8 IPF, 3 controls). The immunohistochemical NHLRC2 expression was quantified with image analysis software and associated with the clinical and smoking data of the patients. NHLRC2 expression levels in primary stromal and small airway epithelial cell lines after exposure to TGF-ß1 was measured by quantitative reverse transcription polymerase chain reaction and Western blot analysis. RESULTS: NHLRC2 expression was detected especially in bronchiolar epithelial cells, type II pneumocytes and macrophages in normal lung. In the lungs of IPF patients, NHLRC2 was mainly expressed in hyperplastic alveolar epithelial cells lining fibroblast foci and honeycombs. NHLRC2 expression assessed by image analysis was higher in IPF compared to controls (p < 0.001). Ever-smokers had more prominent NHLRC2 staining than non-smokers (p = 0.037) among IPF patients. TGF-ß1 exposure did not influence NHLRC2 levels in lung cell lines. CONCLUSIONS: NHLRC2 expression was higher in IPF compared to controls being widely expressed in type II pneumocytes, macrophages, bronchiolar epithelium, and hyperplastic alveolar epithelium. Additionally, its expression was not regulated by the exposure to TGF-ß1 in vitro. Further studies are needed to clarify the role of NHLRC2 in IPF.


Assuntos
Fibrose Pulmonar Idiopática , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Pré-Escolar , Fibroblastos/metabolismo , Humanos , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/metabolismo , Pulmão/metabolismo , RNA Mensageiro/genética , Fator de Crescimento Transformador beta1/metabolismo
5.
Transl Neurodegener ; 11(1): 22, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35418104

RESUMO

BACKGROUND: Transcriptomic and proteomic profiling of human brain tissue is hindered by the availability of fresh samples from living patients. Postmortem samples usually represent the advanced disease stage of the patient. Furthermore, the postmortem interval can affect the transcriptomic and proteomic profiles. Therefore, fresh brain tissue samples from living patients represent a valuable resource of metabolically intact tissue. Implantation of deep brain stimulation (DBS) electrodes into the human brain is a neurosurgical treatment for, e.g., movement disorders. Here, we describe an improved approach to collecting brain tissues from surgical instruments used in implantation of DBS device for transcriptomics and proteomics analyses. METHODS: Samples were extracted from guide tubes and recording electrodes used in routine DBS implantation procedure to treat patients with Parkinson's disease, genetic dystonia and tremor. RNA sequencing was performed in tissues extracted from the recording microelectrodes and liquid chromatography-mass spectrometry (LC-MS) performed in tissues from guide tubes. To assess the performance of the current approach, the obtained datasets were compared with previously published datasets representing brain tissues. RESULTS: Altogether, 32,034 RNA transcripts representing the unique Ensembl gene identifiers were detected from eight samples representing both hemispheres of four patients. By using  LC-MS, we identified 734 unique proteins from 31 samples collected from 14 patients. The datasets are available in the BioStudies database (accession number S-BSST667). Our results indicate that surgical instruments used in DBS installation retain brain material sufficient for protein and gene expression studies. Comparison with previously published datasets obtained with similar approach proved the robustness and reproducibility of the protocol. CONCLUSIONS: The instruments used during routine DBS surgery are a useful source for obtaining fresh brain tissues from living patients. This approach overcomes the issues that arise from using postmortem tissues, such as the effect of postmortem interval on transcriptomic and proteomic landscape of the brain, and can be used for studying molecular aspects of DBS-treatable diseases.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Encéfalo/cirurgia , Estimulação Encefálica Profunda/métodos , Humanos , Microeletrodos , Doença de Parkinson/genética , Doença de Parkinson/cirurgia , Proteômica , Reprodutibilidade dos Testes
6.
J Allergy Clin Immunol ; 148(2): 599-611, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33662367

RESUMO

BACKGROUND: Homozygous loss of DIAPH1 results in seizures, cortical blindness, and microcephaly syndrome (SCBMS). We studied 5 Finnish and 2 Omani patients with loss of DIAPH1 presenting with SCBMS, mitochondrial dysfunction, and immunodeficiency. OBJECTIVE: We sought to further characterize phenotypes and disease mechanisms associated with loss of DIAPH1. METHODS: Exome sequencing, genotyping and haplotype analysis, B- and T-cell phenotyping, in vitro lymphocyte stimulation assays, analyses of mitochondrial function, immunofluorescence staining for cytoskeletal proteins and mitochondria, and CRISPR-Cas9 DIAPH1 knockout in heathy donor PBMCs were used. RESULTS: Genetic analyses found all Finnish patients homozygous for a rare DIAPH1 splice-variant (NM_005219:c.684+1G>A) enriched in the Finnish population, and Omani patients homozygous for a previously described pathogenic DIAPH1 frameshift-variant (NM_005219:c.2769delT;p.F923fs). In addition to microcephaly, epilepsy, and cortical blindness characteristic to SCBMS, the patients presented with infection susceptibility due to defective lymphocyte maturation and 3 patients developed B-cell lymphoma. Patients' immunophenotype was characterized by poor lymphocyte activation and proliferation, defective B-cell maturation, and lack of naive T cells. CRISPR-Cas9 knockout of DIAPH1 in PBMCs from healthy donors replicated the T-cell activation defect. Patient-derived peripheral blood T cells exhibited impaired adhesion and inefficient microtubule-organizing center repositioning to the immunologic synapse. The clinical symptoms and laboratory tests also suggested mitochondrial dysfunction. Experiments with immortalized, patient-derived fibroblasts indicated that DIAPH1 affects the amount of complex IV of the mitochondrial respiratory chain. CONCLUSIONS: Our data demonstrate that individuals with SCBMS can have combined immune deficiency and implicate defective cytoskeletal organization and mitochondrial dysfunction in SCBMS pathogenesis.


Assuntos
Cegueira Cortical , Forminas , Microcefalia , Doenças Mitocondriais , Convulsões , Imunodeficiência Combinada Severa , Adulto , Cegueira Cortical/genética , Cegueira Cortical/imunologia , Cegueira Cortical/patologia , Criança , Pré-Escolar , Feminino , Finlândia , Forminas/deficiência , Forminas/imunologia , Humanos , Masculino , Microcefalia/genética , Microcefalia/imunologia , Microcefalia/patologia , Doenças Mitocondriais/genética , Doenças Mitocondriais/imunologia , Doenças Mitocondriais/patologia , Omã , Convulsões/genética , Convulsões/imunologia , Convulsões/patologia , Imunodeficiência Combinada Severa/genética , Imunodeficiência Combinada Severa/imunologia , Imunodeficiência Combinada Severa/patologia , Síndrome
7.
Hum Mol Genet ; 27(24): 4288-4302, 2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30239752

RESUMO

The development of tissue fibrosis is complex and at the present time, not fully understood. Fibrosis, neurodegeneration and cerebral angiomatosis (FINCA disease) have been described in patients with mutations in NHL repeat-containing protein 2 (NHLRC2). However, the molecular functions of NHLRC2 are uncharacterized. Herein, we identified putative interacting partners for NHLRC2 using proximity-labeling mass spectrometry. We also investigated the function of NHLRC2 using immortalized cells cultured from skin biopsies of FINCA patients and normal fibroblasts with NHLRC2 knock-down and NHLRC2 overexpressing gene modifications. Transmission electron microscopy analysis of immortalized cell cultures from three FINCA patients demonstrated multilamellar bodies and distinctly organized vimentin filaments. Additionally, two of three cultures derived from patient skin biopsies contained cells that exhibited features characteristic of myofibroblasts. Altogether, the data presented in this study show for the first time that NHLRC2 is involved in cellular organization through regulation of the cytoskeleton and vesicle transport. We conclude that compound heterozygous p.Asp148Tyr and p.Arg201GlyfsTer6 mutations in NHLRC2 lead to severe tissue fibrosis in humans by enhancing the differentiation of fibroblasts to myofibroblasts.


Assuntos
Angiomatose/patologia , Encefalopatias/patologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Miofibroblastos/patologia , Degeneração Neural/genética , Actinas/genética , Angiomatose/genética , Encefalopatias/genética , Diferenciação Celular/genética , Células Cultivadas , Fibrose , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Mutação/genética , Miofibroblastos/metabolismo , Pele/metabolismo , Pele/patologia
8.
PLoS One ; 13(8): e0202391, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30138417

RESUMO

NHLRC2 (NHL repeat-containing protein 2) is an essential protein. Mutations of NHLRC2, including Asp148Tyr, have been recently associated with a novel FINCA disease (fibrosis, neurodegeneration, cerebral angiomatosis), which is fatal in early childhood. To gain insight into the mechanisms of action of this essential protein, we determined the crystal structure of the Trx-like and NHL repeat ß-propeller domains of human NHLRC2 to a resolution of 2.7 Å. The structure reveals two domains adjacent to each other that form a cleft containing a conserved CCINC motif. A SAXS structure of full-length NHLRC2 reveals that the non-conserved C-terminal domain does not pack against the N-terminal domains. Analysis of the surface properties of the protein identifies an extended negative electrostatic potential in the surface of the cleft formed by the two domains, which likely forms a binding site for a ligand or interaction partner(s). Bioinformatics analysis discovers homologs across a range of eukaryotic and prokaryotic species and conserved residues map mostly to the adjacent surfaces of the Trx-like and ß-propeller domains that form the cleft, suggesting both that this forms the potential functional site of NHLRC2 and that the function is conserved across species. Asp148 is located in the Trx-like domain and is not conserved across species. The Asp148Tyr mutation destabilizes the structure of the protein by 2°C. The NHLRC2 structure, the first of any of its homologs, provides an important step towards more focused structure-function studies of this essential protein.


Assuntos
Angiomatose , Proteínas de Transporte/química , Transtornos Heredodegenerativos do Sistema Nervoso , Mutação de Sentido Incorreto , Substituição de Aminoácidos , Proteínas de Transporte/genética , Fibrose , Humanos , Domínios Proteicos , Espalhamento a Baixo Ângulo , Difração de Raios X
9.
Acta Neuropathol ; 135(5): 727-742, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29423877

RESUMO

A novel multi-organ disease that is fatal in early childhood was identified in three patients from two non-consanguineous families. These children were born asymptomatic but at the age of 2 months they manifested progressive multi-organ symptoms resembling no previously known disease. The main clinical features included progressive cerebropulmonary symptoms, malabsorption, progressive growth failure, recurrent infections, chronic haemolytic anaemia and transient liver dysfunction. In the affected children, neuropathology revealed increased angiomatosis-like leptomeningeal, cortical and superficial white matter vascularisation and congestion, vacuolar degeneration and myelin loss in white matter, as well as neuronal degeneration. Interstitial fibrosis and previously undescribed granuloma-like lesions were observed in the lungs. Hepatomegaly, steatosis and collagen accumulation were detected in the liver. A whole-exome sequencing of the two unrelated families with the affected children revealed the transmission of two heterozygous variants in the NHL repeat-containing protein 2 (NHLRC2); an amino acid substitution p.Asp148Tyr and a frameshift 2-bp deletion p.Arg201GlyfsTer6. NHLRC2 is highly conserved and expressed in multiple organs and its function is unknown. It contains a thioredoxin-like domain; however, an insulin turbidity assay on human recombinant NHLRC2 showed no thioredoxin activity. In patient-derived fibroblasts, NHLRC2 levels were low, and only p.Asp148Tyr was expressed. Therefore, the allele with the frameshift deletion is likely non-functional. Development of the Nhlrc2 null mouse strain stalled before the morula stage. Morpholino knockdown of nhlrc2 in zebrafish embryos affected the integrity of cells in the midbrain region. This is the first description of a fatal, early-onset disease; we have named it FINCA disease based on the combination of pathological features that include fibrosis, neurodegeneration, and cerebral angiomatosis.


Assuntos
Angiomatose/genética , Encefalopatias/genética , Variação Genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Doenças Neurodegenerativas/genética , Fibrose Pulmonar/genética , Angiomatose/patologia , Angiomatose/fisiopatologia , Animais , Animais Geneticamente Modificados , Encéfalo/metabolismo , Encéfalo/patologia , Encefalopatias/patologia , Encefalopatias/fisiopatologia , Células Cultivadas , Família , Evolução Fatal , Humanos , Lactente , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Hepatopatias/genética , Hepatopatias/patologia , Hepatopatias/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/fisiopatologia , Estudos Prospectivos , Fibrose Pulmonar/patologia , Fibrose Pulmonar/fisiopatologia , Síndrome , Peixe-Zebra , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
10.
Mitochondrion ; 29: 53-8, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27223842

RESUMO

Due to the relative rarity of mitochondrial diseases, generating reference ranges is problematic in evaluation of respiratory chain activities particularly in pediatric cases. We determined the sample distribution of respiratory chain enzyme activities in skeletal muscle biopsies collected from pediatric patients suspected of neuromuscular disorders. Activities of NADH-ubiquinone reductase, NADH-cytochrome c reductase, succinate-cytochrome c reductase; ubiquinol-cytochrome c reductase and cytochrome c oxidase activities have log-normal distributions even when confirmed mitochondrial diseases were ruled out. Impact of the log-normal distribution of the respiratory chain enzyme activities on clinical diagnostics is discussed.


Assuntos
Biópsia , Complexo de Proteínas da Cadeia de Transporte de Elétrons/análise , Doenças Mitocondriais/diagnóstico , Miopatias Mitocondriais/diagnóstico , Músculo Esquelético/patologia , Doenças do Sistema Nervoso/diagnóstico , Adolescente , Criança , Pré-Escolar , Feminino , Atividades Humanas , Humanos , Lactente , Recém-Nascido , Masculino
11.
Am J Hum Genet ; 98(4): 735-43, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-27058446

RESUMO

Deficits in the basal ganglia pathways modulating cortical motor activity underlie both Parkinson disease (PD) and Huntington disease (HD). Phosphodiesterase 10A (PDE10A) is enriched in the striatum, and animal data suggest that it is a key regulator of this circuitry. Here, we report on germline PDE10A mutations in eight individuals from two families affected by a hyperkinetic movement disorder due to homozygous mutations c.320A>G (p.Tyr107Cys) and c.346G>C (p.Ala116Pro). Both mutations lead to a reduction in PDE10A levels in recombinant cellular systems, and critically, positron-emission-tomography (PET) studies with a specific PDE10A ligand confirmed that the p.Tyr107Cys variant also reduced striatal PDE10A levels in one of the affected individuals. A knock-in mouse model carrying the homologous p.Tyr97Cys variant had decreased striatal PDE10A and also displayed motor abnormalities. Striatal preparations from this animal had an impaired capacity to degrade cyclic adenosine monophosphate (cAMP) and a blunted pharmacological response to PDE10A inhibitors. These observations highlight the critical role of PDE10A in motor control across species.


Assuntos
Corpo Estriado/patologia , Hipercinese/genética , Mutação , Diester Fosfórico Hidrolases/genética , Alelos , Sequência de Aminoácidos , Animais , Modelos Animais de Doenças , Regulação da Expressão Gênica , Variação Genética , Células HEK293 , Humanos , Hipercinese/diagnóstico , Hipercinese/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Linhagem , Inibidores de Fosfodiesterase/metabolismo , Alinhamento de Sequência
12.
Hum Mol Genet ; 24(14): 4103-13, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25911677

RESUMO

Protein synthesis in mitochondria is initiated by formylmethionyl-tRNA(Met) (fMet-tRNA(Met)), which requires the activity of the enzyme MTFMT to formylate the methionyl group. We investigated the molecular consequences of mutations in MTFMT in patients with Leigh syndrome or cardiomyopathy. All patients studied were compound heterozygotes. Levels of MTFMT in patient fibroblasts were almost undetectable by immunoblot analysis, and BN-PAGE analysis showed a combined oxidative phosphorylation (OXPHOS) assembly defect involving complexes I, IV and V. The synthesis of only a subset of mitochondrial polypeptides (ND5, ND4, ND1, COXII) was decreased, whereas all others were translated at normal or even increased rates. Expression of the wild-type cDNA rescued the biochemical phenotype when MTFMT was expressed near control levels, but overexpression produced a dominant-negative phenotype, completely abrogating assembly of the OXPHOS complexes, suggesting that MTFMT activity must be tightly regulated. fMet-tRNA(Met) was almost undetectable in control cells and absent in patient cells by high-resolution northern blot analysis, but accumulated in cells overexpressing MTFMT. Newly synthesized COXI was under-represented in complex IV immunoprecipitates from patient fibroblasts, and two-dimensional BN-PAGE analysis of newly synthesized mitochondrial translation products showed an accumulation of free COXI. Quantitative mass spectrophotometry of an N-terminal COXI peptide showed that the ratio of formylated to unmodified N-termini in the assembled complex IV was ∼350:1 in controls and 4:1 in patient cells. These results show that mitochondrial protein synthesis can occur with inefficient formylation of methionyl-tRNA(Met), but that assembly of complex IV is impaired if the COXI N-terminus is not formylated.


Assuntos
Ciclo-Oxigenase 1/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Metionina/química , Células Cultivadas , Cromatografia Líquida , Ciclo-Oxigenase 1/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Exoma , Fibroblastos/citologia , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Inativação Gênica , Heterozigoto , Humanos , Doença de Leigh/genética , Mitocôndrias/metabolismo , Mutação , Fosforilação Oxidativa , Biossíntese de Proteínas , RNA de Transferência de Metionina/genética , RNA de Transferência de Metionina/metabolismo , Análise de Sequência de DNA , Espectrometria de Massas em Tandem
13.
Toxicology ; 331: 47-56, 2015 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-25745980

RESUMO

Sodium valproate (VPA) is a potentially hepatotoxic antiepileptic drug. Risk of VPA-induced hepatotoxicity is increased in patients with mitochondrial diseases and especially in patients with POLG1 gene mutations. We used a HepG2 cell in vitro model to investigate the effect of VPA on mitochondrial activity. Cells were incubated in glucose medium and mitochondrial respiration-inducing medium supplemented with galactose and pyruvate. VPA treatments were carried out at concentrations of 0-2.0mM for 24-72 h. In both media, VPA caused decrease in oxygen consumption rates and mitochondrial membrane potential. VPA exposure led to depleted ATP levels in HepG2 cells incubated in galactose medium suggesting dysfunction in mitochondrial ATP production. In addition, VPA exposure for 72 h increased levels of mitochondrial reactive oxygen species (ROS), but adversely decreased protein levels of mitochondrial superoxide dismutase SOD2, suggesting oxidative stress caused by impaired elimination of mitochondrial ROS and a novel pathomechanism related to VPA toxicity. Increased cell death and decrease in cell number was detected under both metabolic conditions. However, immunoblotting did not show any changes in the protein levels of the catalytic subunit A of mitochondrial DNA polymerase γ, the mitochondrial respiratory chain complexes I, II and IV, ATP synthase, E3 subunit dihydrolipoyl dehydrogenase of pyruvate dehydrogenase, 2-oxoglutarate dehydrogenase and glutathione peroxidase. Our results show that VPA inhibits mitochondrial respiration and leads to mitochondrial dysfunction, oxidative stress and increased cell death, thus suggesting an essential role of mitochondria in VPA-induced hepatotoxicity.


Assuntos
Anticonvulsivantes/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Hepatócitos/efeitos dos fármacos , Mitocôndrias Hepáticas/efeitos dos fármacos , Doenças Mitocondriais/induzido quimicamente , Fosforilação Oxidativa/efeitos dos fármacos , Ácido Valproico/toxicidade , Trifosfato de Adenosina/metabolismo , Morte Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Respiração Celular/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Relação Dose-Resposta a Droga , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Galactose/metabolismo , Glucose/metabolismo , Células Hep G2 , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias Hepáticas/metabolismo , Mitocôndrias Hepáticas/patologia , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/patologia , Estresse Oxidativo/efeitos dos fármacos , Ácido Pirúvico/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo , Fatores de Tempo
14.
J Mol Med (Berl) ; 83(10): 786-94, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16142472

RESUMO

Complex I has a vital role in the energy production of the cell, and the clinical spectrum of complex I deficiency varies from severe lactic acidosis in infants to muscle weakness in adults. It has been estimated that the cause of complex I deficiency, especially in children, is often a mutation in the nuclear-encoded genes and, more rarely, in the genes encoded by mitochondrial DNA. We sequenced nine complex I subunit coding genes, NDUFAB1, NDUFS1, NDUFS2, NDUFS3, NDUFS4, NDUFS7, NDUFS8, NDUFV1 and NDUFV2, in 13 children with defined complex I deficiency. Two novel substitutions were found: a synonymous replacement 201A>T in NDUFV2 and a non-synonymous base exchange 52C>T in NDUFS8. The 52C>T substitution produced the replacement Arg18Cys in the leading peptide of the TYKY subunit. This novel missense mutation was found as a heterozygote in one patient and her mother, but not among 202 healthy controls nor among 107 children with undefined encephalomyopathy. Bioinformatic analyses suggested that Arg18Cys could lead to marked changes in the physicochemical properties of the mitochondrial-targeting peptide of TYKY, but we could not see changes in the assembly or activity of complex I or in the transcription of NDUFS8 in the fibroblasts of our patient. We suggest that Arg18Cys in the leading peptide of the TYKY subunit is not solely pathogenic, and that other genetic factors contribute to the disease-causing potential of this mutation.


Assuntos
Complexo I de Transporte de Elétrons/genética , Variação Genética , Encefalomiopatias Mitocondriais/genética , NAD(P)H Desidrogenase (Quinona)/genética , Alelos , Substituição de Aminoácidos , Arginina/química , Arginina/genética , Criança , Biologia Computacional , Sequência Conservada , Cisteína/química , Cisteína/genética , Complexo I de Transporte de Elétrons/deficiência , Humanos , Encefalomiopatias Mitocondriais/enzimologia , Mutação , NAD(P)H Desidrogenase (Quinona)/deficiência , NADH Desidrogenase , Subunidades Proteicas/deficiência , Subunidades Proteicas/genética , Análise de Sequência de DNA , Transcrição Gênica
15.
Ann Neurol ; 58(4): 544-52, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16044424

RESUMO

The objective of this study was to investigate clinical, biochemical, and genetic features in 7 probands (a total of 11 patients) with nicotine-amide adenine dinucleotide (NADH) dehydrogenase (complex I) deficiency. We screened the mitochondrial DNA for mutations and found pathogenic mutations in complex I genes (mitochondrial NADH dehydrogenase subunit (MTND) genes) in three probands. The 10191T>C mutation in MTND3 and the 14487T>C mutation in MTND6 were present in two probands with Leigh's-like and Leigh's syndrome, respectively. Four siblings with a syndrome consisting of encephalomyopathy with hearing impairment, optic nerve atrophy, and cardiac involvement had the 11778G>A mutation in MTND4, previously associated with Leber hereditary optic neuropathy. These findings demonstrate that mutations in MTND genes are relatively frequent in patients with complex I deficiency. Biochemical measurements of respiratory chain function in muscle mitochondria showed that all patients had a moderate decrease of the mitochondrial adenosine triphosphate production rate. Interestingly, the complex I deficiency caused secondary metabolic alterations with decreased oxaloacetate-induced inhibition of succinate dehydrogenase (complex II) and excretion of Krebs cycle intermediates in the urine. Our results thus suggest that altered regulation of metabolism may play an important role in the pathogenesis of complex I deficiency.


Assuntos
Complexo I de Transporte de Elétrons/deficiência , Complexo I de Transporte de Elétrons/genética , Erros Inatos do Metabolismo , Mutação , NADH Desidrogenase/genética , Trifosfato de Adenosina/metabolismo , Adolescente , Adulto , Western Blotting/métodos , Criança , Pré-Escolar , Análise Mutacional de DNA , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Feminino , Humanos , Lactente , Masculino , Erros Inatos do Metabolismo/genética , Erros Inatos do Metabolismo/metabolismo , Erros Inatos do Metabolismo/fisiopatologia , Modelos Biológicos , NADH Desidrogenase/metabolismo , Treonina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA