Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 323, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36609635

RESUMO

Given its limited accessibility, the CA2 area has been less investigated compared to other subregions of the hippocampus. While the development of transgenic mice expressing Cre recombinase in the CA2 has revealed unique features of this area, the use of mouse lines has several limitations, such as lack of specificity. Therefore, a specific gene delivery system is required. Here, we confirmed that the AAV-PHP.eB capsid preferably infected CA2 pyramidal cells following retro-orbital injection and demonstrated that the specificity was substantially higher after injection into the lateral ventricle. In addition, a tropism for the CA2 area was observed in organotypic slice cultures. Combined injection into the lateral ventricle and stereotaxic injection into the CA2 area specifically introduced the transgene into CA2 pyramidal cells, enabling us to perform targeted patch-clamp recordings and optogenetic manipulation. These results suggest that AAV-PHP.eB is a versatile tool for specific gene transduction in CA2 pyramidal cells.


Assuntos
Vetores Genéticos , Ventrículos Laterais , Camundongos , Animais , Transdução Genética , Vetores Genéticos/genética , Técnicas de Transferência de Genes , Camundongos Transgênicos , Células Piramidais , Dependovirus/genética
2.
Neurosci Res ; 190: 92-106, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36574563

RESUMO

The claustrum coordinates the activities of individual cortical areas through abundant reciprocal connections with the cerebral cortex. Although these excitatory connections have been extensively investigated in three subregions of the claustrum-core region and dorsal and ventral shell regions-the contribution of GABAergic neurons to the circuitry in each subregion remains unclear. Here, we examined the distribution of GABAergic neurons and their dendritic and axonal arborizations in each subregion. Combining in situ hybridization with immunofluorescence histochemistry showed that approximately 10% of neuronal nuclei-positive cells expressed glutamic acid decarboxylase 67 mRNA across the claustral subregions. Approximately 20%, 30%, and 10% of GABAergic neurons were immunoreactive for parvalbumin (PV), somatostatin (SOM), and vasoactive intestinal polypeptide, respectively, in each subregion, and these neurochemical markers showed little overlap with each other. We then reconstructed PV and SOM neurons labeled with adeno-associated virus vectors. The dendrites and axons of PV and SOM neurons were preferentially localized to their respective subregions where their cell bodies were located. Furthermore, the axons were preferentially extended in a rostrocaudal direction, whereas the dendrites were relatively isotropic. The present findings suggest that claustral PV and SOM neurons might execute information processing separately within the core and shell regions.


Assuntos
Claustrum , Parvalbuminas , Camundongos , Animais , Parvalbuminas/metabolismo , Claustrum/metabolismo , Axônios/metabolismo , Neurônios GABAérgicos/metabolismo , Somatostatina/metabolismo , Dendritos/metabolismo
3.
Sci Rep ; 12(1): 14807, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-36097273

RESUMO

Tyramide signal amplification (TSA) is a highly sensitive method for histochemical analysis. Previously, we reported a TSA system, biotinyl tyramine-glucose oxidase (BT-GO), for bright-filed imaging. Here, we develop fluorochromized tyramide-glucose oxidase (FT-GO) as a multiplex fluorescent TSA system. FT-GO involves peroxidase-catalyzed deposition of fluorochromized tyramide (FT) with hydrogen peroxide produced by enzymatic reaction between glucose and glucose oxidase. We showed that FT-GO enhanced immunofluorescence signals while maintaining low background signals. Compared with indirect immunofluorescence detections, FT-GO demonstrated a more widespread distribution of monoaminergic projection systems in mouse and marmoset brains. For multiplex labeling with FT-GO, we quenched antibody-conjugated peroxidase using sodium azide. We applied FT-GO to multiplex fluorescent in situ hybridization, and succeeded in labeling neocortical interneuron subtypes by coupling with immunofluorescence. FT-GO immunofluorescence further increased the detectability of an adeno-associated virus tracer. Given its simplicity and a staining with a high signal-to-noise ratio, FT-GO would provide a versatile platform for histochemical analysis.


Assuntos
Corantes , Glucose Oxidase , Animais , Imunofluorescência , Hibridização in Situ Fluorescente/métodos , Camundongos , Peroxidases
4.
eNeuro ; 9(3)2022.
Artigo em Inglês | MEDLINE | ID: mdl-35580986

RESUMO

The dorsal raphe (DR) nucleus contains many tyrosine hydroxylase (TH)-positive neurons which are regarded as dopaminergic (DA) neurons. These DA neurons in the DR and periaqueductal gray (PAG) region (DADR-PAG neurons) are a subgroup of the A10 cluster, which is known to be heterogeneous. This DA population projects to the central nucleus of the amygdala (CeA) and the bed nucleus of the stria terminalis (BNST) and has been reported to modulate various affective behaviors. To characterize, the histochemical features of DADR-PAG neurons projecting to the CeA and BNST in mice, the current study combined retrograde labeling with Fluoro-Gold (FG) and histological techniques, focusing on TH, dopamine transporter (DAT), vasoactive intestinal peptide (VIP), and vesicular glutamate transporter 2 (VGlut2). To identify putative DA neurons, DAT-Cre::Ai14 mice were used. It was observed that DATDR-PAG neurons consisted of the following two subpopulations: TH+/VIP- and TH-/VIP+ neurons. The DAT+/TH-/VIP+ subpopulation would be non-DA noncanonical DAT neurons. Anterograde labeling of DATDR-PAG neurons with AAV in DAT-Cre mice revealed that the fibers exclusively innervated the lateral part of the CeA and the oval nucleus of the BNST. Retrograde labeling with FG injections into the CeA or BNST revealed that the two subpopulations similarly innervated these regions. Furthermore, using VGlut2-Cre::Ai14 mice, it was turned out that the TH-/VIP+ subpopulations innervating both CeA and BNST were VGlut2-positive neurons. These two subpopulations of DATDR-PAG neurons, TH+/VIP- and TH-/VIP+, might differentially interfere with the extended amygdala, thereby modulating affective behaviors.


Assuntos
Núcleo Dorsal da Rafe , Substância Cinzenta Periaquedutal , Tonsila do Cerebelo/metabolismo , Animais , Proteínas da Membrana Plasmática de Transporte de Dopamina , Neurônios Dopaminérgicos/metabolismo , Núcleo Dorsal da Rafe/metabolismo , Camundongos , Substância Cinzenta Periaquedutal/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Peptídeo Intestinal Vasoativo
5.
J Vis Exp ; (183)2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35635469

RESUMO

A detailed protocol is provided here to visualize neuronal structures from mesoscopic to microscopic levels in brain tissues. Neuronal structures ranging from neural circuits to subcellular neuronal structures are visualized in mouse brain slices optically cleared with ScaleSF. This clearing method is a modified version of ScaleS and is a hydrophilic tissue clearing method for tissue slices that achieves potent clearing capability as well as a high-level of preservation of fluorescence signals and structural integrity. A customizable three dimensional (3D)-printed imaging chamber is designed for reliable mounting of cleared brain tissues. Mouse brains injected with an adeno-associated virus vector carrying enhanced green fluorescent protein gene were fixed with 4% paraformaldehyde and cut into slices of 1-mm thickness with a vibrating tissue slicer. The brain slices were cleared by following the clearing protocol, which include sequential incubations in three solutions, namely, ScaleS0 solution, phosphate buffer saline (-), and ScaleS4 solution, for a total of 10.5-14.5 h. The cleared brain slices were mounted on the imaging chamber and embedded in 1.5% agarose gel dissolved in ScaleS4D25(0) solution. The 3D image acquisition of the slices was carried out using a confocal laser scanning microscope equipped with a multi-immersion objective lens of a long working distance. Beginning with mesoscopic neuronal imaging, we succeeded in visualizing fine subcellular neuronal structures, such as dendritic spines and axonal boutons, in the optically cleared brain slices. This protocol would facilitate understanding of neuronal structures from circuit to subcellular component scales.


Assuntos
Encéfalo , Neurônios , Animais , Encéfalo/metabolismo , Imageamento Tridimensional/métodos , Camundongos , Microscopia Confocal/métodos
6.
Biochem Biophys Res Commun ; 608: 66-72, 2022 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-35390674

RESUMO

Enteroendocrine cells (EECs) are the primary sensory cells that sense the gut luminal environment and secret hormones to regulate organ function. Recent studies revealed that vagal afferent neurons are connected to EECs and relay sensory information from EECs to the brain stem. To date, however, the identity of vagal afferent neurons connected to a given EEC subtype and the mode of their gene responses to its intestinal hormone have remained unknown. Hypothesizing that EEC-associated vagal afferent neurons change their gene expression in response to the microbiota-related extracellular stimuli, we conducted comparative gene expression analyses of the nodose-petrosal ganglion complex (NPG) using specific pathogen-free (SPF) and germ-free (GF) mice. We report here that the Uts2b gene, which encodes a functionally unknown neuropeptide, urotensin 2B (UTS2B), is expressed in a microbiota-dependent manner in NPG neurons. In cultured NPG neurons, expression of Uts2b was induced by AR420626, the selective agonist for FFAR3. Moreover, distinct gastrointestinal hormones exerted differential effects on Uts2b expression in NPG neurons, where cholecystokinin (CCK) significantly increased its expression. The majority of Uts2b-expressing NPG neurons expressed CCK-A, the receptor for CCK, which comprised approximately 25% of all CCK-A-expressing NPG neurons. Selective fluorescent labeling of Uts2b-expressing NPG neurons revealed a direct contact of their nerve fibers to CCK-expressing EECs. This study identifies the Uts2b as a microbiota-regulated gene, demonstrates that Uts2b-expressing vagal afferent neurons transduce sensory information from CCK-expressing EECs to the brain, and suggests potential involvement of UTS2B in a modality of CCK actions.


Assuntos
Colecistocinina , Peptídeos e Proteínas de Sinalização Intracelular , Microbiota , Neurônios Aferentes , Hormônios Peptídicos , Nervo Vago , Animais , Colecistocinina/genética , Colecistocinina/metabolismo , Células Enteroendócrinas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Neurônios Aferentes/metabolismo , Gânglio Nodoso/metabolismo , Hormônios Peptídicos/genética , Hormônios Peptídicos/metabolismo , Nervo Vago/metabolismo
7.
STAR Protoc ; 2(1): 100230, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33364620

RESUMO

We developed an adeno-associated virus (AAV) vector-based technique to label mouse neostriatal neurons comprising direct and indirect pathways with different fluorescent proteins and analyze their axonal projections. The AAV vector expresses GFP or RFP in the presence or absence of Cre recombinase and should be useful for labeling two cell populations exclusively dependent on its expression. Here, we describe the AAV vector design, stereotaxic injection of the AAV vector, and a highly sensitive immunoperoxidase method for axon visualization. For complete details on the use and execution of this protocol, please refer to Okamoto et al. (2020).


Assuntos
Dependovirus , Vetores Genéticos , Neostriado/metabolismo , Vias Neurais/metabolismo , Neurônios/metabolismo , Transdução Genética , Animais , Integrases/biossíntese , Integrases/genética , Camundongos , Neostriado/citologia , Vias Neurais/citologia , Neurônios/citologia
8.
iScience ; 23(9): 101409, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32877648

RESUMO

Indirect pathway medium-sized spiny neurons (iMSNs) in the neostriatum are well known to project to the external segment of the globus pallidus (GPe). Although direct MSNs (dMSNs) also send axon collaterals to the GPe, it remains unclear how dMSNs and iMSNs converge within the GPe. Here, we selectively labeled neighboring dMSNs and iMSNs with green and red fluorescent proteins using an adeno-associated virus vector and examined axonal projections of dMSNs and iMSNs to the GPe in mice. Both dMSNs and iMSNs formed two axonal arborizations displaying topographical projections in the dorsoventral and mediolateral planes. iMSNs displayed a wider and denser axon distribution, which included that of dMSNs. Density peaks of dMSN and iMSN axons almost overlapped, revealing convergence of dMSN axons in the center of iMSN projection fields. These overlapping projections suggest that dMSNs and iMSNs may work cooperatively via interactions within the GPe.

9.
Genesis ; 58(1): e23341, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31651080

RESUMO

Mu opioid receptor (MOR) is involved in various brain functions, such as pain modulation, reward processing, and addictive behaviors, and mediates the main pharmacologic effects of morphine and other opioid compounds. To gain genetic access to MOR-expressing cells, and to study physiological and pathological roles of MOR signaling, we generated a MOR-CreER knock-in mouse line, in which the stop codon of the Oprm1 gene was replaced by a DNA fragment encoding a T2A peptide and tamoxifen (Tm)-inducible Cre recombinase. We show that the MOR-CreER allele undergoes Tm-dependent recombination in a discrete subtype of neurons that express MOR in the adult nervous system, including the olfactory bulb, cerebral cortex, striosome compartments in the striatum, hippocampus, amygdala, thalamus, hypothalamus, interpeduncular nucleus, superior and inferior colliculi, periaqueductal gray, parabrachial nuclei, cochlear nucleus, raphe nuclei, pontine and medullary reticular formation, ambiguus nucleus, solitary nucleus, spinal cord, and dorsal root ganglia. The MOR-CreER mouse line combined with a Cre-dependent adeno-associated virus vector enables robust gene manipulation in the MOR-enriched striosomes. Furthermore, Tm treatment during prenatal development effectively induces Cre-mediated recombination. Thus, the MOR-CreER mouse is a powerful tool to study MOR-expressing cells with conditional gene manipulation in developing and mature neural tissues.


Assuntos
Técnicas de Introdução de Genes/métodos , Receptores Opioides mu/genética , Animais , Encéfalo/metabolismo , Gânglios Espinais/metabolismo , Regulação da Expressão Gênica/genética , Camundongos , Modelos Animais , Neurônios/metabolismo , Transdução de Sinais , Medula Espinal/metabolismo
10.
Brain Res ; 1695: 18-30, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-29792869

RESUMO

Parvalbumin-positive (PV+) neurons in the cerebral cortex, mostly corresponding to fast-spiking basket cells, have been implicated in higher-order brain functions and psychiatric disorders. We previously demonstrated that the somatic compartment of PV+ neurons received inhibitory inputs mainly from vasoactive intestinal polypeptide (VIP)+ neurons, whereas inhibitory inputs to the dendritic compartment were derived mostly from PV+ and somatostatin (SOM)+ neurons. However, a substantial number of the axosomatic inputs have remained unidentified. Here we show preferential innervation of the somatic compartment of PV+ neurons by cholecystokinin (CCK)+ neurons in the mouse primary somatosensory cortex. CCK+ neurons, a minor population of GABAergic neurons (3.2%), displayed no colocalization with PV or SOM immunoreactivity but partial overlap with VIP immunoreactivity (27.7%). Confocal laser scanning microscopy observation of CCK+ synaptic inputs to PV+ neurons revealed that CCK+ neurons preferred the somatic compartment to the dendritic compartment of PV+ neurons and provided approximately 33% of the axosomatic inhibitory inputs to PV+ neurons. Additionally, 20.9% and 12.1% of the axosomatic inputs were derived from CCK+/VIP+ and CCK+/VIP-negative (-) neurons, presumably double bouquet and large basket cells, respectively. Furthermore, the densities of the axosomatic inputs from CCK+ and/or VIP+ neurons to PV+ neurons were not significantly different among the cortical layers. The present findings suggest that, by preferentially innervating the cell bodies of PV+ neurons, both CCK+/VIP- basket and CCK+/VIP+ double bouquet cells might efficiently interfere with action potential generation of PV+ neurons, and that the two types of CCK+ neurons might have a large impact on cortical activity through PV+ neuron inhibition.


Assuntos
Colecistocinina/metabolismo , Neurônios/metabolismo , Parvalbuminas/metabolismo , Córtex Somatossensorial/metabolismo , Animais , Córtex Cerebral/metabolismo , Dendritos/metabolismo , Neurônios GABAérgicos/metabolismo , Camundongos Transgênicos , Somatostatina/metabolismo , Sinapses/fisiologia , Peptídeo Intestinal Vasoativo/metabolismo
11.
Science ; 359(6378): 935-939, 2018 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-29472486

RESUMO

Bioluminescence is a natural light source based on luciferase catalysis of its substrate luciferin. We performed directed evolution on firefly luciferase using a red-shifted and highly deliverable luciferin analog to establish AkaBLI, an all-engineered bioluminescence in vivo imaging system. AkaBLI produced emissions in vivo that were brighter by a factor of 100 to 1000 than conventional systems, allowing noninvasive visualization of single cells deep inside freely moving animals. Single tumorigenic cells trapped in the mouse lung vasculature could be visualized. In the mouse brain, genetic labeling with neural activity sensors allowed tracking of small clusters of hippocampal neurons activated by novel environments. In a marmoset, we recorded video-rate bioluminescence from neurons in the striatum, a deep brain area, for more than 1 year. AkaBLI is therefore a bioengineered light source to spur unprecedented scientific, medical, and industrial applications.


Assuntos
Luciferases de Vaga-Lume/química , Medições Luminescentes/métodos , Neurônios/citologia , Análise de Célula Única/métodos , Animais , Benzotiazóis/química , Callithrix , Carcinogênese/química , Carcinogênese/patologia , Corpo Estriado/química , Corpo Estriado/citologia , Evolução Molecular Direcionada , Hipocampo/química , Luciferases de Vaga-Lume/genética , Pulmão/irrigação sanguínea , Camundongos , Movimento , Neurônios/química , Engenharia de Proteínas , Gravação em Vídeo
12.
J Neurosci Res ; 96(7): 1186-1207, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29314192

RESUMO

In rodents, the dorsolateral striatum regulates voluntary movement by integrating excitatory inputs from the motor-related cerebral cortex and thalamus to produce contingent inhibitory output to other basal ganglia nuclei. Striatal parvalbumin (PV)-producing interneurons receiving this excitatory input then inhibit medium spiny neurons (MSNs) and modify their outputs. To understand basal ganglia function in motor control, it is important to reveal the precise synaptic organization of motor-related cortical and thalamic inputs to striatal PV interneurons. To examine which domains of the PV neurons receive these excitatory inputs, we used male bacterial artificial chromosome transgenic mice expressing somatodendritic membrane-targeted green fluorescent protein in PV neurons. An anterograde tracing study with the adeno-associated virus vector combined with immunodetection of pre- and postsynaptic markers visualized the distribution of the excitatory appositions on PV dendrites. Statistical analysis revealed that the density of thalamostriatal appositions along the dendrites was significantly higher on the proximal than distal dendrites. In contrast, there was no positional preference in the density of appositions from axons of the dorsofrontal cortex. Population observations of thalamostriatal and corticostriatal appositions by immunohistochemistry for pathway-specific vesicular glutamate transporters confirmed that thalamic inputs preferentially, and cortical ones less preferentially, made apposition on proximal dendrites of PV neurons. This axodendritic organization suggests that PV neurons produce fast and reliable inhibition of MSNs in response to thalamic inputs and process excitatory inputs from motor cortices locally and plastically, possibly together with other GABAergic and dopaminergic dendritic inputs, to modulate MSN inhibition.


Assuntos
Corpo Estriado/fisiologia , Dendritos/fisiologia , Interneurônios/metabolismo , Interneurônios/fisiologia , Parvalbuminas/biossíntese , Tálamo/fisiologia , Animais , Axônios/metabolismo , Córtex Cerebral/metabolismo , Corpo Estriado/citologia , Corpo Estriado/metabolismo , Dendritos/metabolismo , Ácido Glutâmico , Masculino , Camundongos , Camundongos Transgênicos , Vias Neurais/metabolismo , Vias Neurais/fisiologia , Terminações Pré-Sinápticas/metabolismo , Terminações Pré-Sinápticas/fisiologia , Sinapses/metabolismo , Sinapses/fisiologia , Tálamo/metabolismo
13.
PLoS One ; 12(1): e0169611, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28060929

RESUMO

Visualization of neurons is indispensable for the investigation of neuronal circuits in the central nervous system. Virus vectors have been widely used for labeling particular subsets of neurons, and the adeno-associated virus (AAV) vector has gained popularity as a tool for gene transfer. Here, we developed a single AAV vector Tet-Off platform, AAV-SynTetOff, to improve the gene-transduction efficiency, specifically in neurons. The platform is composed of regulator and response elements in a single AAV genome. After infection of Neuro-2a cells with the AAV-SynTetOff vector, the transduction efficiency of green fluorescent protein (GFP) was increased by approximately 2- and 15-fold relative to the conventional AAV vector with the human cytomegalovirus (CMV) or human synapsin I (SYN) promoter, respectively. We then injected the AAV vectors into the mouse neostriatum. GFP expression in the neostriatal neurons infected with the AAV-SynTetOff vector was approximately 40-times higher than that with the CMV or SYN promoter. By adding a membrane-targeting signal to GFP, the axon fibers of neostriatal neurons were clearly visualized. In contrast, by attaching somatodendritic membrane-targeting signals to GFP, axon fiber labeling was mostly suppressed. Furthermore, we prepared the AAV-SynTetOff vector, which simultaneously expressed somatodendritic membrane-targeted GFP and membrane-targeted red fluorescent protein (RFP). After injection of the vector into the neostriatum, the cell bodies and dendrites of neostriatal neurons were labeled with both GFP and RFP, whereas the axons in the projection sites were labeled only with RFP. Finally, we applied this vector to vasoactive intestinal polypeptide-positive (VIP+) neocortical neurons, one of the subclasses of inhibitory neurons in the neocortex, in layer 2/3 of the mouse primary somatosensory cortex. The results revealed the differential distribution of the somatodendritic and axonal structures at the population level. The AAV-SynTetOff vector developed in the present study exhibits strong fluorescence labeling and has promising applications in neuronal imaging.


Assuntos
Vetores Genéticos/genética , Neurônios/metabolismo , Transdução Genética , Animais , Linhagem Celular , Dependovirus/genética , Expressão Gênica , Ordem dos Genes , Genes Reporter , Humanos , Masculino , Camundongos , Especificidade de Órgãos , Regiões Promotoras Genéticas , Transgenes
14.
J Comp Neurol ; 525(3): 574-591, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-27491021

RESUMO

Odor information is regulated by olfactory inputs, bulbar interneurons, and centrifugal inputs in the olfactory bulb (OB). Cholinergic neurons projecting from the nucleus of the horizontal limb of the diagonal band of Broca and the magnocellular preoptic nucleus are one of the primary centrifugal inputs to the OB. In this study, we focused on cholinergic regulation of the OB and analyzed neural morphology with a particular emphasis on the projection pathways of cholinergic neurons. Single-cell imaging of a specific neuron within dense fibers is critical to evaluate the structure and function of the neural circuits. We labeled cholinergic neurons by infection with virus vector and then reconstructed them three-dimensionally. We also examined the ultramicrostructure of synapses by electron microscopy tomography. To further clarify the function of cholinergic neurons, we performed confocal laser scanning microscopy to investigate whether other neurotransmitters are present within cholinergic axons in the OB. Our results showed the first visualization of complete cholinergic neurons, including axons projecting to the OB, and also revealed frequent axonal branching within the OB where it innervated multiple glomeruli in different areas. Furthermore, electron tomography demonstrated that cholinergic axons formed asymmetrical synapses with a morphological variety of thicknesses of the postsynaptic density. Although we have not yet detected the presence of other neurotransmitters, the range of synaptic morphology suggests multiple modes of transmission. The present study elucidates the ways that cholinergic neurons could contribute to the elaborate mechanisms involved in olfactory processing in the OB. J. Comp. Neurol. 525:574-591, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Neurônios Colinérgicos/citologia , Bulbo Olfatório/citologia , Animais , Colina O-Acetiltransferase/genética , Colina O-Acetiltransferase/metabolismo , Neurônios Colinérgicos/metabolismo , Dependovirus , Tomografia com Microscopia Eletrônica , Vetores Genéticos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Imageamento Tridimensional , Imuno-Histoquímica , Masculino , Camundongos Endogâmicos C3H , Camundongos Transgênicos , Técnicas de Rastreamento Neuroanatômico , Bulbo Olfatório/metabolismo , Condutos Olfatórios/citologia , Condutos Olfatórios/metabolismo , Olfato/fisiologia
15.
Front Neuroanat ; 10: 124, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28066195

RESUMO

The recurrent network composed of excitatory and inhibitory neurons is fundamental to neocortical function. Inhibitory neurons in the mammalian neocortex are molecularly diverse, and individual cell types play unique functional roles in the neocortical microcircuit. Recently, vasoactive intestinal polypeptide-positive (VIP+) neurons, comprising a subclass of inhibitory neurons, have attracted particular attention because they can disinhibit pyramidal cells through inhibition of other types of inhibitory neurons, such as parvalbumin- (PV+) and somatostatin-positive (SOM+) inhibitory neurons, promoting sensory information processing. Although VIP+ neurons have been reported to receive synaptic inputs from PV+ and SOM+ inhibitory neurons as well as from cortical and thalamic excitatory neurons, the somatodendritic localization of these synaptic inputs has yet to be elucidated at subcellular spatial resolution. In the present study, we visualized the somatodendritic membranes of layer (L) 2/3 VIP+ neurons by injecting a newly developed adeno-associated virus (AAV) vector into the barrel cortex of VIP-Cre knock-in mice, and we determined the extensive ramification of VIP+ neuron dendrites in the vertical orientation. After immunohistochemical labeling of presynaptic boutons and postsynaptic structures, confocal laser scanning microscopy revealed that the synaptic contacts were unevenly distributed throughout the perisomatic (<100 µm from the somata) and distal-dendritic compartments (≥100 µm) of VIP+ neurons. Both corticocortical and thalamocortical excitatory neurons preferentially targeted the distal-dendritic compartment of VIP+ neurons. On the other hand, SOM+ and PV+ inhibitory neurons preferentially targeted the distal-dendritic and perisomatic compartments of VIP+ neurons, respectively. Notably, VIP+ neurons had few reciprocal connections. These observations suggest different inhibitory effects of SOM+ and PV+ neuronal inputs on VIP+ neuron activity; inhibitory inputs from SOM+ neurons likely modulate excitatory inputs locally in dendrites, while PV+ neurons could efficiently interfere with action potential generation through innervation of the perisomatic domain of VIP+ neurons. The present study, which shows a precise configuration of site-specific inputs, provides a structural basis for the integration mechanism of synaptic inputs to VIP+ neurons.

16.
J Comp Neurol ; 524(4): 896-913, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26287569

RESUMO

Teleosts possess two or three paralogs of gonadotropin-releasing hormone (GnRH) genes: gnrh1, gnrh2, and gnrh3. Some species have lost the gnrh1 and/or gnrh3 genes, whereas gnrh2 has been completely conserved in the teleost species analyzed to date. In most teleosts that possess gnrh1, GnRH1 peptide is the authentic GnRH that stimulates gonadotropin release, whereas GnRH2 and GnRH3, if present, are neuromodulatory. Progenitors of GnRH1 and GnRH3 neurons originate from olfactory placodes and migrate to their destination during early development. However, because of the relatively low affinity/specificity of generally available antibodies that recognize GnRH1 or GnRH3, labeling of these neurons has only been possible using genetic manipulation. We used a model teleost, medaka, which possesses all three paralogous gnrh genes, to analyze development of forebrain GnRH neurons composed of GnRH1 and GnRH3 neurons. Here, we newly generated transgenic medaka lines that express enhanced green fluorescent protein under the control of promoters for gnrh1 or gnrh3, to detect GnRH neurons and facilitate immunohistochemical analysis of the neuronal morphology. We used a combination of immunohistochemistry and three-dimensional confocal microscopy image reconstructions to improve identification of neurites from GnRH1 or GnRH3 neuronal populations with greater precision. This led us to clearly identify the hypophysiotropic innervation of GnRH1 neurons residing in the ventral preoptic area (vPOA) from as early as 10 days post hatching. Furthermore, these analyses also revealed retinopetal projections of nonhypophysiotropic GnRH1 neurons in vPOA, prominent during early developmental stages, and multiple populations of GnRH3 neurons with different origins and migratory pathways.


Assuntos
Diencéfalo/crescimento & desenvolvimento , Proteínas de Peixes/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Neurônios/citologia , Oryzias/crescimento & desenvolvimento , Telencéfalo/crescimento & desenvolvimento , Animais , Animais Geneticamente Modificados , Movimento Celular/fisiologia , Diencéfalo/citologia , Diencéfalo/metabolismo , Proteínas de Peixes/genética , Hormônio Liberador de Gonadotropina/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Imageamento Tridimensional/métodos , Imuno-Histoquímica , Hibridização In Situ , Microscopia Confocal/métodos , Neurônios/metabolismo , Oryzias/anatomia & histologia , Oryzias/metabolismo , Regiões Promotoras Genéticas , RNA Mensageiro/metabolismo , Telencéfalo/citologia , Telencéfalo/metabolismo
17.
Anat Sci Int ; 90(1): 7-21, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25467527

RESUMO

Parvalbumin (PV)-positive fast-spiking cells in the neocortex are known to generate gamma oscillations by mutual chemical and electrical connections. Recent findings suggest that this rhythm might be responsible for higher-order brain functions, and related to psychiatric disorders. To elucidate the precise structural rules of the connections of PV neurons, we first produced genetic tools. Using a lentiviral expression system, we developed neuron-specific promoters and a new reporter protein that labels the somatodendritic membrane of neurons. We applied the reporter protein to the generation of transgenic mice, and succeeded in visualizing the dendrites and cell bodies of PV neurons efficiently. Then we analyzed excitatory and inhibitory inputs to PV neurons in the primary somatosensory cortex using the mice. Corticocortical glutamatergic inputs were more frequently found on the distal dendrites than on the soma, whereas thalamocortical inputs did not differ between the proximal and distal portions. Corticocortical inhibitory inputs were more densely distributed on the soma than on the dendrites. We further investigated which types of neocortical GABAergic neurons preferred the PV soma over their dendrites. We revealed that the somatic and dendritic compartments principally received GABAergic inputs from vasoactive intestinal polypeptide (VIP)-positive and PV neurons, respectively. This compartmental organization suggests that PV neurons communicate with each other mainly via the dendrites, and that their activity is effectively controlled by the somatic inputs of VIP neurons. These findings provide new insights into the neuronal circuits involving PV neurons, and contribute to a better understanding of brain functions and mental disorders.


Assuntos
Neurônios GABAérgicos/fisiologia , Parvalbuminas/metabolismo , Córtex Somatossensorial/citologia , Sinapses/fisiologia , Animais , Axônios/fisiologia , Dendritos/fisiologia , Dendritos/ultraestrutura , Imunofluorescência , Neurônios GABAérgicos/metabolismo , Vetores Genéticos , Lentivirus , Camundongos , Camundongos Transgênicos , Microscopia Confocal , Vias Neurais , Sinapses/ultraestrutura
18.
J Comp Neurol ; 523(2): 262-80, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25234191

RESUMO

Olfactory processing is well known to be regulated by centrifugal afferents from other brain regions, such as noradrenergic, acetylcholinergic, and serotonergic neurons. Serotonergic neurons widely innervate and regulate the functions of various brain regions. In the present study, we focused on serotonergic regulation of the olfactory bulb (OB), one of the most structurally and functionally well-defined brain regions. Visualization of a single neuron among abundant and dense fibers is essential to characterize and understand neuronal circuits. We accomplished this visualization by successfully labeling and reconstructing serotonin (5-hydroxytryptamine: 5-HT) neurons by infection with sindbis and adeno-associated virus into dorsal raphe nuclei (DRN) of mice. 5-HT synapses were analyzed by correlative confocal laser microscopy and serial-electron microscopy (EM) study. To further characterize 5-HT neuronal and network function, we analyzed whether glutamate was released from 5-HT synaptic terminals using immuno-EM. Our results are the first visualizations of complete 5-HT neurons and fibers projecting from DRN to the OB with bifurcations. We found that a single 5-HT axon can form synaptic contacts to both type 1 and 2 periglomerular cells within a single glomerulus. Through immunolabeling, we also identified vesicular glutamate transporter 3 in 5-HT neurons terminals, indicating possible glutamatergic transmission. Our present study strongly implicates the involvement of brain regions such as the DRN in regulation of the elaborate mechanisms of olfactory processing. We further provide a structure basis of the network for coordinating or linking olfactory encoding with other neural systems, with special attention to serotonergic regulation.


Assuntos
Bulbo Olfatório/citologia , Núcleos da Rafe/citologia , Neurônios Serotoninérgicos/citologia , Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Animais , Axônios/metabolismo , Axônios/ultraestrutura , Dependovirus , Tomografia com Microscopia Eletrônica , Ácido Glutâmico/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Imageamento Tridimensional , Imuno-Histoquímica , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Confocal , Microscopia Eletrônica , Vias Neurais/citologia , Vias Neurais/metabolismo , Técnicas de Rastreamento Neuroanatômico , Bulbo Olfatório/metabolismo , Núcleos da Rafe/metabolismo , Neurônios Serotoninérgicos/metabolismo , Sindbis virus , Sinapses/metabolismo , Sinapses/ultraestrutura
19.
J Comp Neurol ; 522(7): 1506-26, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24122731

RESUMO

Dynorphins, leumorphin, and neoendorphins are preprodynorphin (PPD)-derived peptides and ligands for κ-opioid receptors. Using an antibody to PPD C-terminal, we investigated the chemical and molecular characteristics of PPD-expressing neurons in mouse neocortex. PPD-immunopositive neuronal somata were distributed most frequently in layer 5 and less frequently in layers 2-4 and 6 throughout neocortical regions. Combined labeling of immunofluorescence and fluorescent mRNA signals revealed that almost all PPD-immunopositive neurons expressed glutamic acid decarboxylase but not vesicular glutamate transporter, indicating their γ-aminobutyric acid (GABA)ergic characteristics, and that PPD-immunopositive neurons accounted for 15% of GABAergic interneurons in the primary somatosensory area. As GABAergic interneurons were divided into several groups by specific markers, we further examined the chemical characteristics of PPD-expressing neurons by the double immunofluorescence labeling method. More than 95% of PPD-immunopositive neurons were also somatostatin (SOM)-immunopositive in the primary somatosensory, primary motor, orbitofrontal, and primary visual areas, but only 24% were SOM-immunopositive in the medial prefrontal cortex. In the primary somatosensory area, PPD-immunopositive neurons constituted 50%, 79%, 55%, and 17% of SOM-immunopositive neurons in layers 2-3, 4, 5, and 6, respectively. Although SOM-expressing neurons contained calretinin-, neuropeptide Y-, nitric oxide synthase-, and reelin-expressing neurons as subgroups, only reelin immunoreactivity was detected in many PPD-immunopositive neurons. These results indicate that PPD-expressing neurons constitute a large subgroup of SOM-expressing cortical interneurons, and the PPD/SOM-expressing GABAergic neurons might serve not only as inhibitory elements in the local cortical circuit, but also as modulators for cortical neurons expressing κ-opioid and/or SOM receptors.


Assuntos
Dinorfinas/metabolismo , Neurônios GABAérgicos/metabolismo , Interneurônios/metabolismo , Neocórtex/metabolismo , Precursores de Proteínas/metabolismo , Somatostatina/metabolismo , Animais , Calbindina 2/metabolismo , Moléculas de Adesão Celular Neuronais/metabolismo , Contagem de Células , Proteínas da Matriz Extracelular/metabolismo , Imunofluorescência , Neurônios GABAérgicos/citologia , Glutamato Descarboxilase/metabolismo , Técnicas Imunoenzimáticas , Interneurônios/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neocórtex/citologia , Proteínas do Tecido Nervoso/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Neuropeptídeo Y/metabolismo , Óxido Nítrico Sintase/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteína Reelina , Serina Endopeptidases/metabolismo , Córtex Somatossensorial/citologia , Córtex Somatossensorial/metabolismo , Proteínas Vesiculares de Transporte de Glutamato/metabolismo
20.
J Neurosci ; 33(2): 544-55, 2013 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-23303934

RESUMO

Parvalbumin (PV)-producing fast-spiking neurons are well known to generate gamma oscillation by mutual chemical and electrical connections in the neocortex. Although it was clearly demonstrated that PV neurons form a dense gap junction network with each other not only at the proximal sites but also at the distal dendrites, comprehensive quantitative data on the chemical connections are still lacking. To elucidate the connectivity, we investigated inhibitory inputs to PV neurons in the somatosensory cortex, using the transgenic mice in which the dendrites and cell bodies of PV neurons were clearly visualized. We first examined GABAergic inputs to PV neurons by labeling postsynaptic and presynaptic sites with the immunoreactivities for gephyrin and vesicular GABA transporter. The density of GABAergic inputs was highest on the cell bodies, and almost linearly decreased to the distal dendrites. We then investigated inhibitory inputs from three distinct subgroups of GABAergic interneurons by visualizing the axon terminals immunopositive for PV, somatostatin (SOM), or vasoactive intestinal polypeptide (VIP). PV and SOM inputs were frequently located on the dendrites with the ratio of 2.5:1, but much less on the cell bodies. By contrast, VIP inputs clearly preferred the cell bodies to the dendrites. Consequently, the dendritic and somatic compartments of PV neurons received ∼60 and 62% of inhibitory inputs from PV and VIP neurons, respectively. This compartmental organization of inhibitory inputs suggests that PV neurons, together with gap junctions, constitute mutual connections at the dendrites, and that their activities are negatively controlled by the somatic inputs of VIP neurons.


Assuntos
Dendritos/fisiologia , Interneurônios/fisiologia , Neocórtex/fisiologia , Parvalbuminas/fisiologia , Animais , Axônios/fisiologia , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Técnica Indireta de Fluorescência para Anticorpo , Proteínas de Fluorescência Verde/metabolismo , Processamento de Imagem Assistida por Computador , Hibridização in Situ Fluorescente , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Imunoeletrônica , Neocórtex/citologia , Neocórtex/metabolismo , Terminações Nervosas/fisiologia , Vias Neurais , Somatostatina/genética , Somatostatina/metabolismo , Peptídeo Intestinal Vasoativo/genética , Peptídeo Intestinal Vasoativo/metabolismo , Ácido gama-Aminobutírico/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA