Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Ann Hematol ; 102(12): 3311-3323, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37656190

RESUMO

Hemophagocytic lymphohistiocytosis (HLH), a hyperinflammatory syndrome, is caused by the incessant activation of lymphocytes and macrophages, resulting in damage to organs, including hematopoietic organs. Recently, we demonstrated that repeated lipopolysaccharide (LPS) treatment induces HLH-like features in senescence-accelerated (SAMP1/TA-1) mice but not in senescence-resistant control (SAMR1) mice. Hematopoietic failure in LPS-treated SAMP1/TA-1 mice was attributed to hematopoietic microenvironment dysfunction, concomitant with severely imbalanced M1 and M2 macrophage polarization. Macrophages are a major component of the bone marrow (BM) hematopoietic microenvironment. Clodronate liposomes are useful tools for in vivo macrophage depletion. In this study, we depleted macrophages using clodronate liposomes to determine their role in the hematopoietic microenvironment in SAMP1/TA-1 and SAMR1 mice. Under clodronate liposome treatment, the response between SAMR1 and SAMP1/TA-1 mice differed as follows: (1) increase in the number of activated M1 and M2 macrophages derived from newly generated macrophages and M2-dominant and imbalanced M1 and M2 macrophage polarization in the BM and spleen; (2) severe anemia and thrombocytopenia; (3) high mortality rate; (4) decrease in erythroid progenitors and B cell progenitors in the BM; and (5) decrease in the mRNA expression of erythroid-positive regulators such as erythropoietin and increase in that of erythroid- and B lymphoid-negative regulators such as interferon-γ in the BM. Depletion of residual macrophages in SAMP1/TA-1 mice impaired hematopoietic homeostasis, particularly erythropoiesis and B lymphopoiesis, owing to functional impairment of the hematopoietic microenvironment accompanied by persistently imbalanced M1/M2 polarization. Thus, macrophages play a vital role in regulating the hematopoietic microenvironment to maintain homeostasis.


Assuntos
Linfo-Histiocitose Hemofagocítica , Camundongos , Animais , Linfo-Histiocitose Hemofagocítica/metabolismo , Lipossomos/metabolismo , Ácido Clodrônico/farmacologia , Ácido Clodrônico/metabolismo , Lipopolissacarídeos , Macrófagos/metabolismo
2.
Biol Pharm Bull ; 45(11): 1602-1608, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36328495

RESUMO

Lipopolysaccharide (LPS) treatment induced hemophagocytic lymphohistiocytosis in senescence-accelerated mice (SAMP1/TA-1), but not in senescence-resistant control mice (SAMR1). SAMP1/TA-1 treated with LPS exhibited functional impairment of the hematopoietic microenvironment, which disrupted the dynamics of hematopoiesis. Macrophages are a major component of the bone marrow (BM) hematopoietic microenvironment, which regulates hematopoiesis. Qualitative and quantitative changes in activated macrophages in LPS-treated SAMP1/TA-1 are thought to contribute to the functional deterioration of the hematopoietic microenvironment. Thus, we examined the polarization of pro-inflammatory (M1) and anti-inflammatory (M2) macrophages, and the dynamics of macrophage production in the BM of SAMP1/TA-1 and SAMR1 after LPS treatment. After LPS treatment, the proportions of M1 and M2 macrophages and the numbers of macrophage progenitor (CFU-M) cells increased in both SAMP1/TA-1 and SAMR1. However, compared to the SAMR1, the increase in the M1 macrophage proportion was prolonged, and the increase in the M2 macrophage proportion was delayed. The increase in the number of CFU-M cells was prolonged in SAMP1/TA-1 after LPS treatment. In addition, the levels of transcripts encoding an M1 macrophage-inducing cytokine (interferon-γ) and macrophage colony-stimulating factor were markedly increased, and the increases in the levels of transcripts encoding M2 macrophage-inducing cytokines (interleukin (IL)-4, IL-10, and IL-13) were delayed in SAMP1/TA-1 when compared to SAMR1. Our results suggest that LPS treatment led to the severely imbalanced polarization of activated M1/M2 macrophages accompanied by a prolonged increase in macrophage production in the BM of SAMP1/TA-1, which led to the impairment of the hematopoietic microenvironment, and disrupted the dynamics of hematopoiesis.


Assuntos
Medula Óssea , Linfo-Histiocitose Hemofagocítica , Camundongos , Animais , Lipopolissacarídeos/farmacologia , Ativação de Macrófagos , Macrófagos , Citocinas , Modelos Animais de Doenças
3.
Sci Rep ; 11(1): 23250, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34853370

RESUMO

Hemophagocytic lymphohistiocytosis (HLH) is a life-threatening systemic hyper-inflammatory disorder. The mortality of HLH is higher in the elderly than in young adults. Senescence-accelerated mice (SAMP1/TA-1) exhibit characteristic accelerated aging after 30 weeks of age, and HLH-like features, including hematopoietic organ damage, are seen after lipopolysaccharide (LPS) treatment. Thus, SAMP1/TA-1 is a useful model of hematological pathophysiology in the elderly with HLH. In this study, dosing of SAMP1/TA-1 mice with LPS revealed that the suppression of myelopoiesis and B-lymphopoiesis was more severe in aged mice than in young mice. The bone marrow (BM) expression of genes encoding positive regulators of myelopoiesis (G-CSF, GM-CSF, and IL-6) and of those encoding negative regulators of B cell lymphopoiesis (TNF-α) increased in both groups, while the expression of genes encoding positive-regulators of B cell lymphopoiesis (IL-7, SDF-1, and SCF) decreased. The expression of the GM-CSF-encoding transcript was lower in aged mice than in young animals. The production of GM-CSF by cultured stromal cells after LPS treatment was also lower in aged mice than in young mice. The accumulation of the TNF-α-encoding transcript and the depletion of the IL-7-encoding transcript were prolonged in aged mice compared to young animals. LPS dosing led to a prolonged increase in the proportion of BM M1 macrophages in aged mice compared to young animals. The expression of the gene encoding p16INK4a and the proportion of ß-galactosidase- and phosphorylated ribosomal protein S6-positive cells were increased in cultured stromal cells from aged mice compared to those from young animals, while the proportion of Ki67-positive cells was decreased in stromal cells from aged mice. Thus, age-related deterioration of stromal cells probably causes the suppression of hematopoiesis in aged mice. This age-related latent organ dysfunction may be exacerbated in elderly people with HLH, resulting in poor prognosis.


Assuntos
Envelhecimento/patologia , Inflamação/patologia , Linfo-Histiocitose Hemofagocítica/patologia , Células Estromais/patologia , Animais , Células da Medula Óssea/metabolismo , Células da Medula Óssea/patologia , Células Cultivadas , Modelos Animais de Doenças , Regulação da Expressão Gênica , Hematopoese/efeitos dos fármacos , Lipopolissacarídeos/toxicidade , Masculino , Camundongos
4.
Int J Pharm ; 595: 120241, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33484917

RESUMO

Inhaled ciclesonide (CIC), a corticosteroid used to treat asthma that is also being investigated for the treatment of corona virus disease 2019, hydrolyzes to desisobutyryl-ciclesonide (des-CIC) followed by reversible esterification when exposed to fatty acids in lungs. While previous studies have described the distribution and metabolism of the compounds after inhalation, spatial localization in the lungs remains unclear. We visualized two-dimensional spatial localization of CIC and its metabolites in rat lungs after administration of a single dose of a CIC aerosol (with the mass median aerodynamic diameter of 0.918-1.168 µm) using desorption electrospray ionization-time of flight mass spectrometry imaging (DESI-MSI). In the analysis, CIC, des-CIC, and des-CIC-oleate were imaged in frozen lung sections at high spatial and mass resolutions in negative-ion mode. MSI revealed the coexistence of CIC, des-CIC, and des-CIC-oleate on the airway epithelium, and the distribution of des-CIC and des-CIC-oleate in peripheral lung regions. In addition, a part of CIC independently localized on the airway epithelium. These results suggest that distribution of CIC and its metabolites in lungs is related to both the intended delivery of aerosols to pulmonary alveoli and peripheral regions, and the potential deposition of CIC particles on the airway epithelium.


Assuntos
Glucocorticoides/administração & dosagem , Glucocorticoides/farmacocinética , Pulmão/diagnóstico por imagem , Pulmão/metabolismo , Pregnenodionas/administração & dosagem , Pregnenodionas/farmacocinética , Espectrometria de Massas por Ionização por Electrospray/métodos , Administração por Inalação , Aerossóis/química , Animais , Células Epiteliais/metabolismo , Glucocorticoides/sangue , Pregnenodionas/sangue , Pregnenodionas/metabolismo , Alvéolos Pulmonares/metabolismo , Ratos , Ratos Sprague-Dawley , Distribuição Tecidual , Tratamento Farmacológico da COVID-19
5.
Toxicol Rep ; 7: 685-692, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32528856

RESUMO

Recent findings have revealed that extracellular vesicles (EVs) are secreted from cells and circulate in the blood. EVs are classified as exosomes (40-100 nm), microvesicles (50-1,000 nm) or apoptotic bodies (500-2,000 nm). EVs contain mRNAs, microRNAs, and DNAs and have the ability to transfer them from cell to cell. Recently, especially in humans, the diagnostic accuracy of tumor cell type-specific EV-associated miRNAs as biomarkers has been found to be more than 90 %. In addition, microRNAs contained in EVs in blood are being identified as specific biomarkers of chemical-induced inflammation and organ damage. Therefore, microRNAs contained in the EVs released into the blood from tissues and organs in response to adverse events such as exposure to chemical substances and drugs are expected to be useful as novel biomarkers for toxicity assessment. In this study, C57BL/6 J male mice orally dosed with carbon tetrachloride (CCl4) were used as a hepatotoxicity animal model. Here, we report that not only the known hepatotoxicity biomarkers miR-122 and miR-192 but also 42 novel EV-associated biomarkers were upregulated in mice dosed with CCl4. Some of these novel biomarkers may be expected to be able to use for better understanding the mechanism of toxicity. These results suggest that our newly developed protocol using EV-associated miRNAs as a biomarker would accelerate the rapid evaluation of toxicity caused by chemical substances and/or drugs.

6.
Ann Hematol ; 99(7): 1515-1523, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32506245

RESUMO

Hemophagocytic lymphohistiocytosis (HLH) is a life-threatening systemic hyperinflammatory disorder. We found recently that repeated lipopolysaccharide (LPS) treatment induces HLH-like features in senescence-accelerated mice (SAMP1/TA-1) but not in senescence-resistant control mice (SAMR1). In this study, we analyzed the dynamics of hematopoiesis in this mouse model of HLH. When treated repeatedly with LPS, the numbers of myeloid progenitor cells (CFU-GM) and B-lymphoid progenitor cells (CFU-preB) in the bone marrow (BM) rapidly decreased after each treatment in both strains. The number of CFU-GM in SAMP1/TA-1 and SAMR1, and of CFU-preB in SAMR1, returned to pretreatment levels by 7 days after each treatment. However, the recovery in the number of CFU-preB in SAMP1/TA-1 was limited. In both strains, the BM expression of genes encoding positive regulators of myelopoiesis (granulocyte colony-stimulating factor (G-CSF), granulocyte macrophage colony-stimulating factor (GM-CSF), and interleukin (IL)-6), and negative regulators of B lymphopoiesis (tumor necrosis factor (TNF)-α) was increased. The expression of genes encoding positive regulators of B lymphopoiesis (stromal-cell derived factor (SDF)-1, IL-7, and stem cell factor (SCF)) was persistently decreased in SAMP1/TA-1 but not in SAMR1. Expression of the gene encoding p16INK4a and the proportion of ß-galactosidase-positive cells were increased in cultured stromal cells obtained from LPS-treated SAMP1/TA-1 but not in those from LPS-treated SAMR1. LPS treatment induced qualitative changes in stromal cells, which comprise the microenvironment supporting appropriate hematopoiesis, in SAMP1/TA-1; these stromal cell changes are inferred to disrupt the dynamics of hematopoiesis. Thus, hematopoietic tissue is one of the organs that suffer life-threatening damage in HLH.


Assuntos
Medula Óssea/patologia , Hematopoese/fisiologia , Células-Tronco Hematopoéticas/patologia , Linfo-Histiocitose Hemofagocítica/patologia , Linfo-Histiocitose Hemofagocítica/fisiopatologia , Nicho de Células-Tronco/fisiologia , Animais , Células da Medula Óssea/patologia , Células da Medula Óssea/fisiologia , Contagem de Células , Células Cultivadas , Microambiente Celular/fisiologia , Modelos Animais de Doenças , Células-Tronco Hematopoéticas/fisiologia , Lipopolissacarídeos , Linfo-Histiocitose Hemofagocítica/induzido quimicamente , Masculino , Camundongos , Células Estromais/patologia
7.
Haematologica ; 104(10): 1995-2005, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30819910

RESUMO

Hemophagocytic lymphohistiocytosis is a life-threatening systemic hyperinflammatory disorder with primary and secondary forms. Primary hemophagocytic lymphohistiocytosis is associated with inherited defects in various genes that affect the immunological cytolytic pathway. Secondary hemophagocytic lymphohistiocytosis is not inherited, but complicates various medical conditions including infections, autoinflammatory/autoimmune diseases, and malignancies. When senescence-accelerated mice (SAMP1/TA-1) with latent deterioration of immunological function and senescence-resistant control mice (SAMR1) were treated repeatedly with lipopolysaccharide, SAMP1/TA-1 mice displayed the clinicopathological features of hemophagocytic lymphohistiocytosis such as hepatosplenomegaly, pancytopenia, hypofibrinogenemia, hyperferritinemia, and hemophagocytosis. SAMR1 mice showed no features of hemophagocytic lymphohistiocytosis. Lipopolysaccharide induced upregulation of proinflammatory cytokines such as interleukin-1ß, interleukin-6, tumor necrosis factor-α, and interferon-γ, and interferon-γ-inducible chemokines such as c-x-c motif chemokine ligands 9 and 10 in the liver and spleen in both SAMP1/TA-1 and SAMR1 mice. However, upregulation of proinflammatory cytokines and interferon-γ-inducible chemokines in the liver persisted for longer in SAMP1/TA-1 mice than in SAMR1 mice. In addition, the magnitude of upregulation of interferon-γ in the liver and spleen after lipopolysaccharide treatment was greater in SAMP1/TA-1 mice than in SAMR1 mice. Furthermore, lipopolysaccharide treatment led to a prolonged increase in the proportion of peritoneal M1 macrophages and simultaneously to a decrease in the proportion of M2 macrophages in SAMP1/TA-1 mice compared with SAMR1 mice. Lipopolysaccharide appeared to induce a hyperinflammatory reaction and prolonged inflammation in SAMP1/TA-1 mice, resulting in features of secondary hemophagocytic lymphohistiocytosis. Thus, SAMP1/TA-1 mice represent a useful mouse model to investigate the pathogenesis of bacterial infection-associated secondary hemophagocytic lymphohistiocytosis.


Assuntos
Envelhecimento/imunologia , Lipopolissacarídeos/toxicidade , Linfo-Histiocitose Hemofagocítica , Animais , Citocinas/imunologia , Inflamação/induzido quimicamente , Inflamação/imunologia , Inflamação/patologia , Fígado/imunologia , Fígado/patologia , Linfo-Histiocitose Hemofagocítica/induzido quimicamente , Linfo-Histiocitose Hemofagocítica/imunologia , Linfo-Histiocitose Hemofagocítica/patologia , Macrófagos Peritoneais/imunologia , Macrófagos Peritoneais/patologia , Camundongos , Baço/imunologia , Baço/patologia , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/imunologia
8.
Biol Pharm Bull ; 39(12): 1939-1947, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27904036

RESUMO

Chronic lipopolysaccharide (LPS) exposure to mice reduces the lymphoid compartment and skews the hematopoietic cell compartment toward myeloid-cells, which is considered to be a direct effect of LPS on hematopoietic stem cells. However, the effect of chronic LPS exposure on stromal-cells, which compose the hematopoietic microenvironment, has not been elucidated. Here, we investigated early- and late-phase effects of repeated LPS exposure on stromal-cells. During the early phase, when mice were treated with 5 or 25 µg LPS three times at weekly intervals, the numbers of myeloid-progenitor (colony forming unit-granulocyte macrophage (CFU-GM)) cells and B lymphoid-progenitor (CFU-preB) cells in the bone-marrow (BM) rapidly decreased after each treatment. The number of CFU-GM cells recovered from the initial decrease and then increased to levels higher than pretreatment levels, whereas the number of CFU-preB cells remained lower than pretreatment levels. In the BM, expression of genes for positive-regulators of myelopoiesis including granulocyte colony-stimulating factor (G-CSF), granulocyte macrophage colony-stimulating factor (GM-CSF), and interleukin (IL)-6 and negative-regulators of B lymphopoiesis including tumor necrosis factor (TNF)-α was up-regulated, whereas expression of positive-regulators of B lymphopoiesis including stromal cell-derived factor (SDF)-1, IL-7, and stem cell factor (SCF) was down-regulated. During the late phase, the number of CFU-preB cells remained lower than pretreatment levels 70 d after the first treatments with 5 and 25 µg LPS, whereas the number of CFU-GM cells returned to pretreatment levels. IL-7 gene expression in the BM remained down-regulated, whereas gene-expression levels of SDF-1 and SCF were restored. Thus, chronic LPS exposure may impair stromal-cell function, resulting in prolonged suppression of B lymphopoiesis, which may appear to be senescence similar to the hematological phenotype.


Assuntos
Lipopolissacarídeos/farmacologia , Linfopoese/efeitos dos fármacos , Mielopoese/efeitos dos fármacos , Células Estromais/efeitos dos fármacos , Animais , Células Cultivadas , Citocinas/genética , Expressão Gênica/efeitos dos fármacos , Células Progenitoras de Granulócitos e Macrófagos/citologia , Contagem de Leucócitos , Linfopoese/fisiologia , Masculino , Camundongos Endogâmicos BALB C , Mielopoese/fisiologia , Células Precursoras de Linfócitos B/citologia , Células Estromais/metabolismo
9.
Exp Biol Med (Maywood) ; 241(5): 485-92, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26743757

RESUMO

Aging is considered to be a functional retardation of continuous xenobiotic responses over a lifetime after the developmental period; thus, the effects of ionizing radiation over a lifetime may be somewhat accounted for by a modifier of aging effects. This study was conducted to evaluate the possible/synergic effects of radiation during aging by determining cell-cycle parameters of hematopoietic stem cells/hematopoietic progenitor cells (HSCs/HPCs), such as the percent of cells in cycling, the generation doubling time, and the cumulative cycling-cell fraction, by bromodeoxyuridine-ultraviolet assay, which enables the determination of their cycling capacity in vivo. Colony-forming progenitor cells, such as colony-forming unit (CFU)-granulocyte/macrophage (GM), CFU in the spleen on day 9 (CFU-S9), and CFU-S on day 13 (CFU-S13) for mature, less mature, and immature HPCs, respectively, were evaluated in young and old mice (6 weeks and 21 months of age, respectively) with or without 2-Gy whole-body irradiation and a 4-week recovery period. Then, cell-cycle parameters were evaluated and compared. As a result, the generation doubling time of all types of HPC was prolonged by the irradiation in both young and old mouse groups, except that of CFU-S13 in old mice, which showed acceleration of the cell cycle following the irradiation. In addition, only CFU-S13 in irradiated old mice showed a significant increase in the cumulative cycling-cell-fraction ratio. Significant changes due to the effects of aging and irradiation on HPCs were observed only in the immature HPCs, i.e., the cell cycle of immature HPCs was suppressed by aging without irradiation and was, in contrast, accelerated as the cells recovered from radiation-induced damage. This suggests that the mechanisms of peripheral blood recovery after 2-Gy whole-body irradiation are markedly different between young and old mice, although 21-month-old mice showed almost the same level of recovery as the young mice.


Assuntos
Ciclo Celular/efeitos da radiação , Proliferação de Células/efeitos da radiação , Células-Tronco Hematopoéticas/fisiologia , Células-Tronco Hematopoéticas/efeitos da radiação , Irradiação Corporal Total , Envelhecimento , Animais , Masculino , Camundongos Endogâmicos C57BL
10.
J Appl Toxicol ; 35(3): 230-40, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25413632

RESUMO

The number of murine mature blood cells recovered within 6 weeks after 2-Gy whole-body irradiation at 6 weeks of age, whereas in the case of the undifferentiated hematopoietic stem/progenitor cell (HSC/HPC) compartment [cells in the lineage-negative, c-kit-positive and stem-cell-antigen-1-positive (LKS) fraction], the numerical differences between mice with and without irradiation remained more than a year, but conclusively the cells showed numerical recovery. When mice were exposed to radiation at 6 months of age, acute damages of mature blood cells were rather milder probably because of their maturation with age; but again, cells in the LKS fraction were specifically damaged, and their numerical recovery was significantly delayed probably as a result of LKS-specific cellular damages. Interestingly, in contrast to the recovery of the number of cells in the LKS fraction, their quality was not recovered, which was quantitatively assessed on the basis of oxidative-stress-related fluorescence intensity. To investigate why the recovery in the number of cells in the LKS fraction was delayed, expression levels of genes related to cellular proliferation and apoptosis of cells in the bone marrow and LKS fraction were analyzed by real-time polymerase chain reaction (RT-PCR). In the case of 21-month-old mice after radiation exposure, Ccnd1, PiK3r1 and Fyn were overexpressed solely in cells in the LKS fraction. Because Ccnd1and PiK3r1 upregulated by aging were further upregulated by radiation, single-dose radiation seemed to induce the acceleration of aging, which is related to the essential biological responses during aging based on a lifetime-dependent relationship between a living creature and xenobiotic materials.


Assuntos
Envelhecimento , Eritrócitos/efeitos da radiação , Células-Tronco Hematopoéticas/efeitos da radiação , Leucócitos Mononucleares/efeitos da radiação , Envelhecimento/sangue , Envelhecimento/efeitos da radiação , Animais , Antígenos Ly/metabolismo , Apoptose/genética , Apoptose/efeitos da radiação , Contagem de Células Sanguíneas , Linhagem da Célula , Proliferação de Células/genética , Proliferação de Células/efeitos da radiação , Senescência Celular/genética , Senescência Celular/efeitos da radiação , Relação Dose-Resposta à Radiação , Eritrócitos/metabolismo , Eritrócitos/patologia , Citometria de Fluxo , Perfilação da Expressão Gênica , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/patologia , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/patologia , Masculino , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-kit/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Transcriptoma/efeitos da radiação , Irradiação Corporal Total
11.
Ann N Y Acad Sci ; 1310: 69-73, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24611895

RESUMO

This paper reviews quantitative and qualitative studies conducted to identify changes in the characteristics of hematopoietic stem/progenitor cells (HSCs/HPCs) with or without radiation exposure. The numerical recovery of HSCs/HPCs after radiation exposure is lower than for other types of cells, an effect that may depend on hierarchical ordering of generation age during blood cell differentiation, from primitive HSCs to various differentiated HPCs. Studies are in progress to evaluate gene expression in bone marrow cells and cells in the lineage-negative, c-Kit(+), stem cell antigen(+) (LKS) fraction from 21-month-old mice, with or without radiation exposure. Preliminary data suggest that cell cycle-related genes, that is, cyclin D1 (Ccnd1), phosphatidylinositol 3 kinase regulatory subunit polypeptide 1 (PiK3r1), and Fyn, are upregulated solely in the LKS fraction from 21-month-old mice irradiated at 6 weeks of age, compared with the LKS fraction from age-matched nonirradiated control mice. Additional studies may provide evidence that the aging phenotype is exaggerated following exposure to ionizing radiation, specifically in the LKS fraction.


Assuntos
Senescência Celular , Regulação da Expressão Gênica/efeitos da radiação , Genes cdc/efeitos da radiação , Células-Tronco Hematopoéticas/fisiologia , Células-Tronco Hematopoéticas/efeitos da radiação , Animais , Ciclo Celular/genética , Ciclo Celular/efeitos da radiação , Proliferação de Células/efeitos da radiação , Senescência Celular/genética , Senescência Celular/efeitos da radiação , Humanos , Camundongos
12.
Anticancer Res ; 32(5): 1827-31, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22593469

RESUMO

We performed combined chemotherapy using docetaxel and nedaplatin with and without radiation therapy as a second-line treatment for relapsed or metastatic esophageal carcinoma. Eighteen patients were enrolled from April 2003 to June 2010; 10 cases were metastatic and 8 cases were recurrent. Nedaplatin (30 mg/m(2)) and Docetaxel (30 mg/m(2)/day) were administered on days 1, 8 and 15. Nine cases undertook the combined-chemotherapy only, with a response rate of 22.2% (2/9). The other nine cases received combined chemo-radiotherapy, with a response rate of 55.5% (5/9). The median survival time of all patients was 273 days, the median survival time for patients treated with combined chemotherapy was 331 days, while for patients treated with combined chemoradiotherapy was 244 days. The two-year survival rate overall was 11.1% (1/9). The adverse event of leukocytopenia greater than grade 3 was observed in three cases of combined chemoradiotherapy cases only. Docetaxel and Nedaplatin combination chemotherapy is well tolerated and useful as second-line chemotherapy for patients with relapsed or metastatic esophageal cancer.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias Esofágicas/tratamento farmacológico , Idoso , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Docetaxel , Neoplasias Esofágicas/mortalidade , Neoplasias Esofágicas/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Metástase Neoplásica , Recidiva Local de Neoplasia/tratamento farmacológico , Compostos Organoplatínicos/administração & dosagem , Taxoides/administração & dosagem
13.
Exp Biol Med (Maywood) ; 237(3): 279-86, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22442357

RESUMO

Anemia induced by inflammation is well known to be more serious in the elderly than in non-elderly adults; however, the reason why this is so remains unclear. Neopterin produced by monocytes during inflammation promotes myelopoiesis but suppresses B-lymphopoiesis and erythropoiesis, by activating stromal cells in mice. Here, age-related changes in the erythropoietic response to neopterin were determined using senescence accelerated mice (SAMP1) with senescence stromal-cell impairment. Intravenous injection of neopterin into young mice (8-12 weeks old) resulted in a decrease in erythroid progenitor cell number in the bone marrow (BM), concomitant with an increase in myeloid progenitor cell number over one week. Intravenous injection of neopterin into aged mice (30-36 weeks old) resulted in a prolonged decrease in erythroid progenitor cell number in the BM over three weeks and a limited increase in myeloid progenitor cell number over one day. Neopterin treatment induced a decrease in serum erythropoietin concentrations in young mice but not in aged mice. The gene expression of tumor necrosis factor α (TNF-α), a negative regulator of erythropoiesis, was up-regulated in the BM of both young and aged mice, and the degree of TNF-α up-regulation was the same in both groups. The gene expression of interleukin (IL)-11, a positive regulator of erythropoiesis, was also up-regulated over one day in both young and aged mice. However, IL-11 gene expression remained up-regulated thereafter in young mice, whereas it was rapidly down-regulated in aged mice. These data suggest that prolonged suppression of erythropoiesis in aged mice may be due to a decrease in the production of positive regulators rather than to an increase in the production of negative regulators. Our combined data suggest that age-related impairment of stromal cells induces serious anemia in the elderly during inflammation.


Assuntos
Envelhecimento/fisiologia , Células da Medula Óssea/metabolismo , Eritropoese/fisiologia , Neopterina/metabolismo , Células Estromais/metabolismo , Anemia/metabolismo , Anemia/fisiopatologia , Animais , Medula Óssea/metabolismo , Medula Óssea/patologia , Células da Medula Óssea/patologia , Citocinas/biossíntese , Células Precursoras Eritroides/metabolismo , Perfilação da Expressão Gênica , Inflamação/metabolismo , Inflamação/fisiopatologia , Masculino , Camundongos , Camundongos Mutantes , Mielopoese/fisiologia , Neopterina/farmacologia , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Estromais/patologia
14.
Biol Pharm Bull ; 34(10): 1533-41, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21963492

RESUMO

Mast-cell-development in the bone-marrow (BM) and the spleen is restrictedly controlled by stromal-cells which produce positive-regulators such as stem cell factor (SCF), and negative-regulators such as transforming growth factor-ß (TGF-ß). How the balance between positive- and negative-regulation is achieved or maintained by stromal-cells is not well understood. We intravenously injected 5-fluorouracil (5-FU) and lipopolysaccharide (LPS) into C3H/HeN mice to disrupt mast-cell-development in order to reveal mechanisms of mast-cell-regulation. 5-FU treatment induces a rapid decrease in the number of mast-cell-progenitor (colony-forming unit (CFU)-mast) cells in the BM and spleen, followed by rapid recovery of CFU-mast numbers. Expression of the SCF gene is one-fiftieth the level of that of TGF-ß during the steady-state in BM and spleen. After 5-FU treatment, SCF mRNA levels in the BM markedly increased, approaching TGF-ß mRNA levels, whereas SCF levels in the spleen showed limited oscillations whose increases paralleled those in TGF-ß levels. In contrast, LPS treatment induces a rapid decrease in CFU-mast number in the BM and a rapid increase in of CFU-mast number in the spleen. After LPS treatment, SCF mRNA levels in the BM markedly decreased, whereas SCF levels in the spleen remained unchanged. These results suggest that regulation of mast-cell-development is dominated by negative-signals in the BM and spleen during the steady-state, and, under biostress-conditions such as 5-FU and LPS treatment, the balance between positive- and negative-regulation can be changed in the BM but not in the spleen. The difference in the regulation of mast-cell-development in the BM versus the spleen probably reflects the different roles of tissue-specific stromal-cells.


Assuntos
Citocinas/genética , Fluoruracila/farmacologia , Células Progenitoras de Granulócitos e Macrófagos/imunologia , Imunossupressores/farmacologia , Lipopolissacarídeos/imunologia , Mastócitos/imunologia , Animais , Medula Óssea/imunologia , Medula Óssea/metabolismo , Divisão Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ensaio de Unidades Formadoras de Colônias , Citocinas/metabolismo , Avaliação Pré-Clínica de Medicamentos , Escherichia coli , Feminino , Fluoruracila/metabolismo , Expressão Gênica/efeitos dos fármacos , Células Progenitoras de Granulócitos e Macrófagos/efeitos dos fármacos , Imunossupressores/metabolismo , Leucócitos/efeitos dos fármacos , Lipopolissacarídeos/metabolismo , Mastócitos/metabolismo , Camundongos , Camundongos Endogâmicos C3H , Baço/imunologia , Baço/metabolismo , Células Estromais/fisiologia , Fatores de Tempo
15.
Exp Hematol ; 38(5): 417-25, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20304046

RESUMO

OBJECTIVE: Hematopoietic stem cells are supposed to repopulate and maintain long-term regeneration of the recipient's bone marrow and peripheral blood. In this study, we evaluated the regeneration capability of Lin(-)/c-Kit(+)/Sca-1(+) (LKS) cells, the putative hematopoietic stem cells, after radiation exposure at graded doses, for long-term regeneration of peripheral blood in lethally irradiated recipients. MATERIALS AND METHODS: LKS primitive progenitor cells, collected from the bone marrow of Ly5.1 mice that had been irradiated at graded increased doses (0.5, 1, 1.5, and 2 Gy) were transfused into lethally irradiated (9.5 Gy) Ly5.2 mice. Then, the Ly5.1 chimeric ratio in repopulated peripheral blood cells in the recipients was monitored. A reactive oxygen species (ROS)-reacting CM-H(2)DCFDA dye was used to evaluate the amount of ROS in LKS primitive progenitor cells with/without irradiation. Moreover, the amount of intracytoplasmic ROS generated after irradiation was estimated in terms of percent attenuation of cellular increase in number by the treatment with 100 microM N-acetyl-L-cysteine before irradiation. RESULTS: Differential regeneration capability of LKS cells irradiated at graded increased doses showed a dose-dependent suppression of regeneration of peripheral blood in the recipient mice as compared with LKS cells without radiation exposure. The amount of intracytoplasmic ROS in LKS cells was much smaller than that in mature bone marrow cells, and that of ROS in LKS increased slightly after radiation exposure, as evaluated by CM-H(2)DCFDA dye fluorescence analysis. The estimated amount of ROS generated in LKS cells after radiation exposure was different between progenitor cells for early regeneration and those for late regeneration; namely, the amount of ROS in progenitors on day 270 were estimated to be smaller than that in progenitors for day 35 or day 90. CONCLUSIONS: Because of the small amount of generated radiation-induced ROS calculated in terms of attenuation rate after N-acetyl-L-cysteine treatment, progenitor cells regenerating peripheral blood cells 270 days after transfusion were assumed to be anaerobic and more immature and radioresistant than those on day 35 or day 90. However, limited long-term regeneration capability (up to 270 days) of steady-state LKS cells than that of unfractionated rescue bone marrow cells suggests that LKS cells do not seem to be true hematopoietic stem cells.


Assuntos
Antígenos Ly/análise , Células-Tronco Hematopoéticas/citologia , Quimera por Radiação/sangue , Acetilcisteína/farmacologia , Animais , Linhagem da Célula , Citoplasma/química , Relação Dose-Resposta à Radiação , Sobrevivência de Enxerto , Células-Tronco Hematopoéticas/efeitos da radiação , Separação Imunomagnética , Masculino , Proteínas de Membrana/análise , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-kit/análise , Protetores contra Radiação/farmacologia , Espécies Reativas de Oxigênio/análise , Fatores de Tempo
16.
Chem Biol Interact ; 184(1-2): 252-8, 2010 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-20035730

RESUMO

Benzene-induced hematopoietic toxicity is an aryl hydrocarbon receptor (AhR)-related adverse effect that is not exhibited in AhR-knockout (KO) mice. In the hematopoietic system, the steady-state expression of AhRs is limited in the hematopoietic progenitor cells; thus, a hierarchical hematopoietic impairment starts from hematopoietic progenitor cells after benzene exposure. When one looks at wild-type recipient mice that have been lethally irradiated and repopulated with AhR-KO bone marrow cells, owing to reconstruction by the marrow from AhR-KO mice, no impairment is observed in the assay of granulo-macrophage colony-forming units (CFU-GMs) in the bone marrow after benzene exposure of the reconstituted mice. In contrast, in mature white blood cells concern, benzene-induced hematopoietic cytotoxicity is observed in the same reconstituted mice; however, this benzene-induced hematopoietic cytotoxicity in mature white blood cells is not induced in the case of AhR-KO mice repopulated with wild-type bone marrow cells after a lethal dose of irradiation. The mechanism of benzene-induced hematopoietic toxicity in the mature blood cells in AhR-KO mice is assumed to be based on metabolites such as phenol and hydroquinone derived from hepatic AhR. Thus, the former toxicity in mature white blood cells is assumed to be based on the metabolites of the wild-type hepatic AhR, whereas the latter lack of toxicity in mature blood cells in AhR-KO mice is due to the lack of benzene-induced metabolism in the liver. Global gene expression analysis of bone marrow cells after benzene exposure reveals that MEF2c, the functions of which are known to maintain lymphocyte differentiation and promote proliferation of hematopoietic progenitor cells, is commonly downmodulated not only in C57BL/6 but also in C3H/He mice. In response to these impairments of the hematopoietic progenitor cells and the niches, stochastic and reciprocal upregulations of integrin beta 2 and the Runx family are observed, which are known to stabilize hematopoietic niches during the steady-state. Direct observation of the hematopoietic progenitor cells, particularly the Lin(-)c-kit(+)Sca-1(+) (LKS) fraction, after benzene exposure revealed an increased amount of intracytoplasmic reactive oxygen species (ROS) detected by ROS-reacting dye as compared with other blood cell fractions.


Assuntos
Benzeno/efeitos adversos , Medula Óssea/efeitos dos fármacos , Células-Tronco Hematopoéticas/efeitos dos fármacos , Receptores de Hidrocarboneto Arílico/metabolismo , Animais , Células Sanguíneas/efeitos dos fármacos , Feminino , Expressão Gênica/efeitos dos fármacos , Hematopoese/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Knockout , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Células-Tronco/efeitos dos fármacos
17.
Chem Biol Interact ; 184(1-2): 240-5, 2010 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-20018183

RESUMO

In this study, Trp53-deficient and wild-type mice of both C57BL/6 and C3H/He strains were exposed to benzene (33, 100, and 300 ppm; 6h/day, 5 days/week for 26 weeks) and then observed for lifetime. As results, first, the incidence of nonthymic lymphomas in C57BL/6 mice and acute myeloid leukemias (AMLs) in C3H/He mice showed linear responses at the lower exposure level in Trp53-deficient mice; second, the incidence of thymic lymphomas in C57BL/6 mice and nonthymic lymphomas in C3H/He mice increased without a plateau-like ceiling; thus, the former equivocal induction of hematopoietic neoplasms (HPNs) in the case of low-dose benzene exposure was assumed to be based on the DNA repair potential in wild-type mice, and the latter limited increase in HPNs in the case of high-dose benzene exposure was considered to be due to excessive apoptosis in wild-type mice. Concerning the incidence of AMLs, though a dose of 300 ppm benzene inhalation induced 9% AMLs in wild-type C3H/He mice-AML-prone, it induced AMLs in 38% of Trp53-deficient C3H/He mice. Because AMLs were also observed in Trp53-deficient mice, including in the C57BL/6 mice, benzene exposure may also be a potent inducer of AMLs in mice with some strain differences. In the present study, to elucidate the hematopoietic stem cell-specific, aryl hydrocarbon-receptor-related low-dose adverse effect, global gene expression in the bone marrow was analyzed at 28 days after 2-week-intermittent exposure to 150 mg/kg b.w. benzene, by gavage, i.e., equivalent to the above inhalation protocol with 300 ppm. We observed two conceptually different gene expression profiles; "common gene profiles" (CGPs) shared among mice in each group, and "stochastic gene profiles" (SGPs), i.e., unique union genes from one individual mouse to another. The CGPs of the experimental group and the SGPs of each individual mouse were separately characterized by individual assay. Concerning the CGPs, reciprocal strain differences between C3H/He and C57BL/6 mice in expression gene profiles, both plausible for leukemogenesis, were identified; namely, dominant downmodulations of Sltm and Cryl1, related to suppression of apoptosis and genomic instability in C3H/He mice, respectively, and dominant downmodulations of Atrx/rad54 and Kdm2a, related to a decrease in DNA repair and genomic instability, respectively, in C57BL/6 mice. These findings imply that these reciprocal gene expression differences induced by benzene exposure may lead each strain to undergo different hematopoietic neoplastic pathways. In contrast, each individual mouse often shows a unique SGP. SGPs often include transcription factors, which regulate reciprocal signaling pathways including further SGPs. Among them, apoptosis-related genes expressed in C57BL/6 mice and those in C3H/He mice were attributable to different combinations of SGPs. Such stochastic case-by-case gene expression may be in good agreement with the individual and strain differences observed following benzene exposure. Because gene chip microarray techniques can elucidate stochastic changes in gene expression profiles, possible stochastic toxicology and its future role are discussed.


Assuntos
Benzeno/efeitos adversos , Instabilidade Genômica/efeitos dos fármacos , Neoplasias Hematológicas/induzido quimicamente , Proteína Supressora de Tumor p53/genética , Animais , Deleção de Genes , Perfilação da Expressão Gênica , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Leucemia Mieloide Aguda/induzido quimicamente , Linfoma/induzido quimicamente , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL
18.
Immunobiology ; 215(5): 348-55, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-19592129

RESUMO

Neopterin is produced by monocytes and is a useful biomarker for inflammation. We found previously that neopterin enhanced myelopoiesis but suppressed B-lymphopoiesis triggered by the positive and negative regulations of cytokines produced by stromal cells in mice. The effects of neopterin on erythropoiesis during the enhancement of myelopoiesis were determined in the present study using C57BL/6J mice. The intravenous injection of neopterin into mice resulted in a prolonged decrease in the number of femoral erythroid progenitor cells (BFU-Es and CFU-Es), whereas the number of femoral myeloid progenitor cells (CFU-GMs) was increased. Interestingly, the oscillatory changes in the number of erythroid progenitor cells were reciprocal to those of myeloid progenitor cells. The expression of Cdc42, a regulator of the balance between erythropoiesis and myelopoiesis, was down-regulated, implying that the suppression of erythropoiesis is due to myelopoietic predominance. Furthermore, the expression of SDF-1 in stromal cells, a negative regulator of erythropoiesis, was up-regulated. These results suggest that neopterin facilitates myelopoiesis in the bone marrow by suppressing erythropoiesis, thereby contributing to the potential up-regulation of inflammatory process.


Assuntos
Células da Medula Óssea/metabolismo , Células Precursoras Eritroides/metabolismo , Células Progenitoras de Granulócitos e Macrófagos/metabolismo , Inflamação/imunologia , Neopterina/imunologia , Células Estromais/imunologia , Animais , Biomarcadores , Células da Medula Óssea/citologia , Contagem de Células , Células Cultivadas , Quimiocina CXCL12/metabolismo , Células Precursoras Eritroides/citologia , Eritropoese/genética , Feminino , Regulação da Expressão Gênica , Células Progenitoras de Granulócitos e Macrófagos/citologia , Inflamação/genética , Camundongos , Camundongos Endogâmicos C57BL , Mielopoese/genética , Neopterina/farmacologia , Proteína cdc42 de Ligação ao GTP/metabolismo
19.
Gan To Kagaku Ryoho ; 36(12): 2045-8, 2009 Nov.
Artigo em Japonês | MEDLINE | ID: mdl-20037318

RESUMO

A 78-year-old man underwent a radical resection for esophageal cancer (Stage III) and cardiac gastric cancer (Stage IA) at another hospital 2 years ago. After the operation, he was followed at that hospital. In 2008, abdominal CT scan and FDG-PET/CT revealed a liver tumor. He was referred to our hospital and was diagnosed as esophageal cancer with liver metastasis. He received chemo-radiation therapy (CRT). The regimen was docetaxel hydrate (30 mg/m2, day 1, 8, 29 and 36) and S-1 (60 mg/m2, day 1-14 and day 29-45) with radiation (45 Gy) for liver metastasis. He finished the CRT without any hematotoxicity, liver disorder and non-hematotoxic adverse event (grade 3). Abdominal CT was done 2 months after the end of CRT and revealed that the tumor lesion disappeared completely. The patient is alive for 11 months after the CRT without any evidence of recurrence. The tumor disappeared completely for the last 11 months. We conclude that CRT is safe and very effective for esophageal cancer with liver metastasis.


Assuntos
Neoplasias Esofágicas/patologia , Neoplasias Hepáticas/secundário , Neoplasias Hepáticas/terapia , Idoso , Antineoplásicos/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Terapia Combinada , Docetaxel , Combinação de Medicamentos , Neoplasias Esofágicas/cirurgia , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/radioterapia , Masculino , Ácido Oxônico/administração & dosagem , Taxoides/administração & dosagem , Tegafur/administração & dosagem
20.
Toxicol Sci ; 110(2): 293-306, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19478238

RESUMO

This research focused on three major questions regarding benzene-induced hematopoietic neoplasms (HPNs). First, why are HPNs induced equivocally and at only threshold level with low-dose benzene exposure despite the significant genotoxicity of benzene even at low doses both in experiments and in epidemiology? Second, why is there no linear increase in incidence at high-dose exposure despite a lower acute toxicity (LD(50) > 1000 mg/kg body weight; WHO, 2003, Benzene in drinking-water. Background document for development of WHO Guidelines for Drinking-Water Quality)? Third, why are particular acute myeloid leukemias (AMLs) not commonly observed in mice, although AMLs are frequently observed in human cases of occupational exposure to benzene? In this study, we hypothesized that the threshold-like equivocal induction of HPNs at low-dose benzene exposure is based on DNA repair potential in wild-type mice and that the limited increase in HPNs at a high-dose exposure is due to excessive apoptosis in wild-type mice. To determine whether Trp53 deficiency satisfies the above hypotheses by eliminating or reducing DNA repair and by allowing cells to escape apoptosis, we evaluated the incidence of benzene-induced HPNs in Trp53-deficient C57BL/6 mice with specific regard to AMLs. We also used C3H/He mice, AML prone, with Trp53 deficiency to explore whether a higher incidence of AMLs on benzene exposure might explain the above human-murine differences. As a result, heterozygous Trp53-deficient mice of both strains showed a nonthreshold response of the incidence of HPNs at the lower dose, whereas both strains showed an increasing HPN incidence up to 100% with increasing benzene exposure dose, including AMLs, that developed 38% of heterozygous Trp53-deficient C3H/He mice compared to only 9% of wild-type mice exposed to the high dose. The detection of AMLs in heterozygous Trp53-deficient mice, even in the C57BL/6 strain, implies that benzene may be a potent inducer of AMLs also in mice with some strain differences.


Assuntos
Benzeno/toxicidade , Carcinógenos/toxicidade , Neoplasias Hematológicas/induzido quimicamente , Leucemia Mieloide Aguda/induzido quimicamente , Proteína Supressora de Tumor p53/deficiência , Animais , Apoptose/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Relação Dose-Resposta a Droga , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/metabolismo , Neoplasias Hematológicas/patologia , Heterozigoto , Exposição por Inalação , Dose Letal Mediana , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Knockout , Especificidade da Espécie , Fatores de Tempo , Proteína Supressora de Tumor p53/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA