Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 12740, 2023 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-37544935

RESUMO

Atherosclerosis is a major cause of cerebral and cardiovascular diseases. Intravascular plaques, a well-known pathological finding of atherosclerosis, have a necrotic core composed of macrophages and dead cells. Intraplaque macrophages, which are classified into various subtypes, play key roles in maintenance of normal cellular microenvironment. Excessive uptake of oxidized low-density lipoprotein causes conversion of macrophages to foam cells, and consequent progression/exacerbation of atherosclerosis. G-protein-coupled receptor 55 (GPR55) signaling has been reported to associate with atherosclerosis progression. We demonstrated recently that lysophosphatidylglucoside (lysoPtdGlc) is a specific ligand of GPR55, although in general physiological ligands of GPR55 are poorly understood. Phosphatidylglucoside is expressed on human monocytes and can be converted to lysoPtdGlc. In the present study, we examined possible involvement of lysoPtdGlc/GPR55 signaling in foam cell formation. In monocyte-derived M2c macrophages, lysoPtdGlc/GPR55 signaling inhibited translocation of ATP binding cassette subfamily A member 1 to plasma membrane, and cholesterol efflux. Such inhibitory effect was reversed by GPR55 antagonist ML193. LysoPtdGlc/GPR55 signaling in M2c macrophages was involved in excessive lipid accumulation, thereby promoting foam cell formation. Our findings suggest that lysoPtdGlc/GPR55 signaling is a potential therapeutic target for inhibition of atherosclerosis progression.


Assuntos
Aterosclerose , Placa Aterosclerótica , Humanos , Células Espumosas/metabolismo , Colesterol/metabolismo , Macrófagos/metabolismo , Lipoproteínas LDL/farmacologia , Lipoproteínas LDL/metabolismo , Aterosclerose/patologia , Placa Aterosclerótica/patologia , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Receptores de Canabinoides/metabolismo
2.
Gastroenterology ; 165(5): 1136-1150, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37541526

RESUMO

BACKGROUND & AIMS: Cancers of the alimentary tract, including esophageal adenocarcinomas, colorectal cancers, and cancers of the gastric cardia, are common comorbidities of obesity. Prolonged, excessive delivery of macronutrients to the cells lining the gut can increase one's risk for these cancers by inducing imbalances in the rate of intestinal stem cell proliferation vs differentiation, which can produce polyps and other aberrant growths. We investigated whether ceramides, which are sphingolipids that serve as a signal of nutritional excess, alter stem cell behaviors to influence cancer risk. METHODS: We profiled sphingolipids and sphingolipid-synthesizing enzymes in human adenomas and tumors. Thereafter, we manipulated expression of sphingolipid-producing enzymes, including serine palmitoyltransferase (SPT), in intestinal progenitors of mice, cultured organoids, and Drosophila to discern whether sphingolipids altered stem cell proliferation and metabolism. RESULTS: SPT, which diverts dietary fatty acids and amino acids into the biosynthetic pathway that produces ceramides and other sphingolipids, is a critical modulator of intestinal stem cell homeostasis. SPT and other enzymes in the sphingolipid biosynthesis pathway are up-regulated in human intestinal adenomas. They produce ceramides, which serve as prostemness signals that stimulate peroxisome-proliferator activated receptor-α and induce fatty acid binding protein-1. These actions lead to increased lipid utilization and enhanced proliferation of intestinal progenitors. CONCLUSIONS: Ceramides serve as critical links between dietary macronutrients, epithelial regeneration, and cancer risk.


Assuntos
Adenoma , Ceramidas , Humanos , Animais , Camundongos , Ceramidas/metabolismo , Ácidos Graxos , Esfingolipídeos/metabolismo , Serina C-Palmitoiltransferase/metabolismo
3.
Proc Natl Acad Sci U S A ; 119(51): e2214957119, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36508673

RESUMO

Secretory proteins and lipids are biosynthesized in the endoplasmic reticulum (ER). The "protein quality control" system (PQC) monitors glycoprotein folding and supports the elimination of terminally misfolded polypeptides. A key component of the PQC system is Uridine diphosphate glucose:glycoprotein glucosyltransferase 1 (UGGT1). UGGT1 re-glucosylates unfolded glycoproteins, to enable the re-entry in the protein-folding cycle and impede the aggregation of misfolded glycoproteins. In contrast, a complementary "lipid quality control" (LQC) system that maintains lipid homeostasis remains elusive. Here, we demonstrate that cytotoxic phosphatidic acid derivatives with saturated fatty acyl chains are one of the physiological substrates of UGGT2, an isoform of UGGT1. UGGT2 produces lipid raft-resident phosphatidylglucoside regulating autophagy. Under the disruption of lipid metabolism and hypoxic conditions, UGGT2 inhibits PERK-ATF4-CHOP-mediated apoptosis in mouse embryonic fibroblasts. Moreover, the susceptibility of UGGT2 KO mice to high-fat diet-induced obesity is elevated. We propose that UGGT2 is an ER-localized LQC component that mitigates saturated lipid-associated ER stress via lipid glucosylation.


Assuntos
Fibroblastos , Glucosiltransferases , Animais , Camundongos , Fibroblastos/metabolismo , Glucosiltransferases/metabolismo , Estresse do Retículo Endoplasmático , Glicoproteínas/metabolismo , Lipídeos
4.
Biochem Biophys Res Commun ; 569: 86-92, 2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34237432

RESUMO

Neutrophils undergo spontaneous apoptosis within 24-48 h after leaving bone marrow. Apoptotic neutrophils are subsequently phagocytosed and cleared by macrophages, thereby maintaining neutrophil homeostasis. Previous studies have demonstrated involvement of lysophosphatidylglucoside (lysoPtdGlc), a degradation product of PtdGlc, in modality-specific repulsive guidance of spinal sensory axons, via its specific receptor GPR55. In the present study, using human monocytic cell line THP-1 as a model, we demonstrated that lysoPtdGlc induces monocyte/macrophage migration with typical bell-haped curve and a peak at concentration 10-9 M. Lysophosphatidylinositol (lysoPtdIns), a known GPR55 ligand, induced migration at higher concentration (10-7 M). LysoPtdGlc-treated cells had a polarized shape, whereas lysoPtdIns-treated cells had a spherical shape. In EZ-TAXIScan (chemotaxis) assay, lysoPtdGlc induced chemotactic migration activity of THP-1 cells, while lysoPtdIns induced random migration activity. GPR55 antagonist ML193 inhibited lysoPtdGlc-induced THP-1 cell migration, whereas lysoPtdIns-induced migration was inhibited by CB2-receptor inverse agonist. SiRNA experiments showed that GPR55 mediated lysoPtdGlc-induced migration, while lysoPtdIns-induced migration was mediated by CB2 receptor. Our findings, taken together, suggest that lysoPtdGlc functions as a chemotactic molecule for human monocytes/macrophages via GPR55 receptor, while lysoPtdIns induces random migration activity via CB2 receptor.


Assuntos
Movimento Celular/efeitos dos fármacos , Glucosídeos/farmacologia , Lisofosfolipídeos/química , Macrófagos/efeitos dos fármacos , Monócitos/efeitos dos fármacos , Receptores de Canabinoides/metabolismo , Western Blotting , Movimento Celular/genética , Quimiotaxia/efeitos dos fármacos , Quimiotaxia/fisiologia , Glucosídeos/química , Humanos , Lisofosfolipídeos/farmacologia , Macrófagos/citologia , Macrófagos/metabolismo , Monócitos/citologia , Monócitos/metabolismo , Interferência de RNA , Receptores de Canabinoides/genética , Células THP-1
5.
Angew Chem Int Ed Engl ; 60(25): 13900-13905, 2021 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-33825275

RESUMO

Caveolin-1, which is an essential protein for caveola formation, was chemically synthesized. It is composed of 177 amino acid residues, is triply palmitoylated at the C-terminal region, and is inserted into the lipid bilayer to form a V-shaped structure in the middle of the polypeptide chain. The entire sequence was divided into five peptide segments, each of which was synthesized by the solid-phase method. To improve the solubility of the C-terminal region, O-acyl isopeptide structures were incorporated. After ligation by the thioester method and the introduction of the palmitoyl groups, all the protecting groups were removed and the isopeptide structures were converted into the native peptide bond. Finally, the obtained polypeptide was successfully inserted into bicelles, thus showing the success of the synthesis.


Assuntos
Caveolina 1/síntese química , Caveolina 1/química , Estrutura Molecular
6.
J Biol Chem ; 295(16): 5257-5277, 2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-32144204

RESUMO

ß-Glucocerebrosidase (GBA) hydrolyzes glucosylceramide (GlcCer) to generate ceramide. Previously, we demonstrated that lysosomal GBA1 and nonlysosomal GBA2 possess not only GlcCer hydrolase activity, but also transglucosylation activity to transfer the glucose residue from GlcCer to cholesterol to form ß-cholesterylglucoside (ß-GlcChol) in vitro ß-GlcChol is a member of sterylglycosides present in diverse species. How GBA1 and GBA2 mediate ß-GlcChol metabolism in the brain is unknown. Here, we purified and characterized sterylglycosides from rodent and fish brains. Although glucose is thought to be the sole carbohydrate component of sterylglycosides in vertebrates, structural analysis of rat brain sterylglycosides revealed the presence of galactosylated cholesterol (ß-GalChol), in addition to ß-GlcChol. Analyses of brain tissues from GBA2-deficient mice and GBA1- and/or GBA2-deficient Japanese rice fish (Oryzias latipes) revealed that GBA1 and GBA2 are responsible for ß-GlcChol degradation and formation, respectively, and that both GBA1 and GBA2 are responsible for ß-GalChol formation. Liquid chromatography-tandem MS revealed that ß-GlcChol and ß-GalChol are present throughout development from embryo to adult in the mouse brain. We found that ß-GalChol expression depends on galactosylceramide (GalCer), and developmental onset of ß-GalChol biosynthesis appeared to be during myelination. We also found that ß-GlcChol and ß-GalChol are secreted from neurons and glial cells in association with exosomes. In vitro enzyme assays confirmed that GBA1 and GBA2 have transgalactosylation activity to transfer the galactose residue from GalCer to cholesterol to form ß-GalChol. This is the first report of the existence of ß-GalChol in vertebrates and how ß-GlcChol and ß-GalChol are formed in the brain.


Assuntos
Encéfalo/metabolismo , Colesterol/análogos & derivados , Glucosilceramidase/metabolismo , Animais , Encéfalo/citologia , Linhagem Celular Tumoral , Células Cultivadas , Colesterol/metabolismo , Feminino , Galactose/metabolismo , Galactosilceramidas/metabolismo , Glucosilceramidase/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Bainha de Mielina/metabolismo , Neuroglia/metabolismo , Neurônios/metabolismo , Oryzias , Ratos , Ratos Wistar
7.
J Biochem ; 167(6): 541-547, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32154895

RESUMO

In the past decade, physiological roles and molecular functions of GPRC5 family receptors, originally identified as retinoic acid-induced gene products, have been uncovered, even though their intrinsic agonists are still a mystery. They are differentially distributed in certain tissues and cells in the body suggesting that cell-type-specific regulations and functions are significant. Molecular biological approaches and knockout mouse studies reveal that GPRC5 family proteins have pivotal roles in cancer progression and control of metabolic homeostasis pathways. Remarkably, GPRC5B-mediated tyrosine-phosphorylation signalling cascades play a critical role in development of obesity and insulin resistance through dynamic sphingolipid metabolism.


Assuntos
Ácidos Graxos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Esfingolipídeos/metabolismo , Animais , Humanos , Camundongos , Camundongos Knockout , Obesidade/metabolismo , Fosforilação , Receptores Acoplados a Proteínas G/genética
8.
FASEB J ; 34(1): 1270-1287, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31914593

RESUMO

Dysregulation of the adipo-osteogenic differentiation balance of mesenchymal stem cells (MSCs), which are common progenitor cells of adipocytes and osteoblasts, has been associated with many pathophysiologic diseases, such as obesity, osteopenia, and osteoporosis. Growing evidence suggests that lipid metabolism is crucial for maintaining stem cell homeostasis and cell differentiation; however, the detailed underlying mechanisms are largely unknown. Here, we demonstrate that glucosylceramide (GlcCer) and its synthase, glucosylceramide synthase (GCS), are key determinants of MSC differentiation into adipocytes or osteoblasts. GCS expression was increased during adipogenesis and decreased during osteogenesis. Targeting GCS using RNA interference or a chemical inhibitor enhanced osteogenesis and inhibited adipogenesis by controlling the transcriptional activity of peroxisome proliferator-activated receptor γ (PPARγ). Treatment with GlcCer sufficiently rescued adipogenesis and inhibited osteogenesis in GCS knockdown MSCs. Mechanistically, GlcCer interacted directly with PPARγ through A/B domain and synergistically enhanced rosiglitazone-induced PPARγ activation without changing PPARγ expression, thereby treatment with exogenous GlcCer increased adipogenesis and inhibited osteogenesis. Animal studies demonstrated that inhibiting GCS reduced adipocyte formation in white adipose tissues under normal chow diet and high-fat diet feeding and accelerated bone repair in a calvarial defect model. Taken together, our findings identify a novel lipid metabolic regulator for the control of MSC differentiation and may have important therapeutic implications.


Assuntos
Adipócitos/metabolismo , Diferenciação Celular , Glucosilceramidas/metabolismo , Glucosiltransferases/metabolismo , Células-Tronco Mesenquimais/metabolismo , Osteogênese , PPAR gama/metabolismo , Animais , Glucosilceramidas/genética , Glucosiltransferases/genética , Humanos , Camundongos , PPAR gama/genética
9.
FASEB Bioadv ; 1(7): 435-449, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32123842

RESUMO

Wild-type Kras, a small GTPase, inactivates Ras growth-promoting signaling. However, the role of Kras in differentiation of myeloid cells remains unclear. This study showed the involvement of Kras in a novel regulatory mechanism underlying the dimethyl sulfoxide (DMSO)-induced differentiation of human acute myeloid leukemia HL-60 cells. Kras was found to positively regulate DMSO-induced differentiation, with the activity of Kras increasing upon DMSO. Inhibition of Kras attenuated CD11b expression in differentiated HL-60 cells. GSK3ß, an important component of Wnt signaling, was found to be a downstream signal of Kras. Phosphorylation of GSK3ß was markedly enhanced by DMSO treatment. Moreover, inhibition of GSK3ß enhanced CD11b expression and triggered the accumulation in the nucleus of ß-catenin and Tcf in response to DMSO. Inhibitors of ß-catenin-mediated pathways blocked CD11b expression, further indicating that ß-catenin is involved in the differentiation of HL-60 cells. Elevated expression of C/EBPα and C/EBPɛ accompanied by the expression of granulocyte colony-stimulating factor (G-CSF) receptor was observed during differentiation. Taken together, these findings suggest that Kras engages in cross talk with the Wnt/ß-catenin pathway upon DMSO treatment of HL-60 cells, thereby regulating the granulocytic differentiation of HL-60 cells. These results indicate that Kras acts as a tumor suppressor during the differentiation of myeloid cells.

10.
Biochem Biophys Res Commun ; 503(4): 2673-2677, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30086884

RESUMO

Tyrosine phosphorylation of GPRC5B and phosphorylation-dependent recruitment of Fyn through the SH2 domain have been implicated in NF-κB activation and obesity-linked adipose inflammation. GPRC5B tightly associates with caveolin-1 (Cav1); however, the role of this interaction remains elusive. Here, we report that Cav1 reduces GPRC5B-mediated NF-κB signaling by blocking GPRC5B-phosphorylation. We demonstrate highly abundant tyrosine phosphorylation of GPRC5B is observed in Neuro2a cells lacking endogenous Cav1 expression. Reversely, exogenous expression of Cav1 in these cells inhibits GPRC5B-phosphorylation. Although GPRC5B lacks conventional caveolin-binding motif, cytoplasmic tail of GPRC5B directly interacts with the C-terminal domain of Cav1. The vacant scaffolding domain of Cav1 in the protein complex suggests a potential mechanism for blocking GPRC5B-phosphorylation by Cav1, because Fyn loses the activity by binding with Cav1-scaffolding domain. Enhanced GPRC5B-mediated NF-κB signaling in Cav1-deficient cells were observed under palmitate-induced metabolic stress. These results support Cav1 functions as a negative modulator for GPRC5B action.


Assuntos
Caveolina 1/genética , Regulação da Expressão Gênica , NF-kappa B/genética , Receptores Acoplados a Proteínas G/genética , Caveolina 1/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Genes Reporter , Células HEK293 , Humanos , Luciferases/genética , Luciferases/metabolismo , NF-kappa B/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Ácido Palmítico/farmacologia , Fosforilação/efeitos dos fármacos , Ligação Proteica , Proteínas Proto-Oncogênicas c-fyn/genética , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Tirosina/metabolismo
11.
Cell Metab ; 28(4): 573-587.e13, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30017355

RESUMO

The role of phosphoglycerate dehydrogenase (PHGDH), a key enzyme of the serine synthesis pathway (SSP), in endothelial cells (ECs) remains poorly characterized. We report that mouse neonates with EC-specific PHGDH deficiency suffer lethal vascular defects within days of gene inactivation, due to reduced EC proliferation and survival. In addition to nucleotide synthesis impairment, PHGDH knockdown (PHGDHKD) caused oxidative stress, due not only to decreased glutathione and NADPH synthesis but also to mitochondrial dysfunction. Electron transport chain (ETC) enzyme activities were compromised upon PHGDHKD because of insufficient heme production due to cellular serine depletion, not observed in other cell types. As a result of heme depletion, elevated reactive oxygen species levels caused EC demise. Supplementation of hemin in PHGDHKD ECs restored ETC function and rescued the apoptosis and angiogenesis defects. These data argue that ECs die upon PHGDH inhibition, even without external serine deprivation, illustrating an unusual importance of serine synthesis for ECs.


Assuntos
Células Endoteliais/metabolismo , Heme/metabolismo , Fosfoglicerato Desidrogenase/genética , Fosfoglicerato Desidrogenase/metabolismo , Serina/metabolismo , Apoptose , Erros Inatos do Metabolismo dos Carboidratos/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Suplementos Nutricionais , Técnicas de Silenciamento de Genes , Hemina/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Microcefalia/metabolismo , Mitocôndrias/metabolismo , Mitofagia , Neovascularização Fisiológica , Estresse Oxidativo , Fosfoglicerato Desidrogenase/deficiência , Biossíntese de Proteínas , Transtornos Psicomotores/metabolismo , Purinas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Convulsões/metabolismo
12.
Science ; 349(6251): 974-7, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26315437

RESUMO

Glycerophospholipids, the structural components of cell membranes, have not been considered to be spatial cues for intercellular signaling because of their ubiquitous distribution. We identified lyso-phosphatidyl-ß-D-glucoside (LysoPtdGlc), a hydrophilic glycerophospholipid, and demonstrated its role in modality-specific repulsive guidance of spinal cord sensory axons. LysoPtdGlc is locally synthesized and released by radial glia in a patterned spatial distribution to regulate the targeting of nociceptive but not proprioceptive central axon projections. Library screening identified the G protein-coupled receptor GPR55 as a high-affinity receptor for LysoPtdGlc, and GPR55 deletion or LysoPtdGlc loss of function in vivo caused the misallocation of nociceptive axons into proprioceptive zones. These findings show that LysoPtdGlc/GPR55 is a lipid-based signaling system in glia-neuron communication for neural development.


Assuntos
Axônios/fisiologia , Gânglios Espinais/citologia , Glicerofosfolipídeos/fisiologia , Glicolipídeos/fisiologia , Neuroglia/fisiologia , Nociceptores/fisiologia , Receptores de Canabinoides/fisiologia , Medula Espinal/citologia , Medula Espinal/embriologia , Animais , Embrião de Galinha , Técnicas de Cocultura , Gânglios Espinais/fisiologia , Técnicas de Inativação de Genes , Glicerofosfolipídeos/análise , Glicerofosfolipídeos/metabolismo , Glicolipídeos/análise , Camundongos , Fator de Crescimento Neural/farmacologia , Receptor trkA/metabolismo , Receptor trkC/metabolismo , Receptores de Canabinoides/genética , Técnicas de Cultura de Tecidos
13.
Glycobiology ; 24(10): 926-34, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24821492

RESUMO

Myelin, a multilamellar structure extended from oligodendrocytes or Schwann cells, plays a critical role in maintenance of neuronal function, and damage or loss of myelin causes demyelinating diseases such as multiple sclerosis. For precise alignment of the myelin sheath, there is a requirement for expression of galactosylceramide (GalCer), a major glycosphingolipid in myelin. Synthesis of GalCer is strictly limited in oligodendrocytes in a developmental stage-specific manner. Ceramide galactosyltransferase (CGT), a key enzyme for biosynthesis of GalCer, exhibits restricted expression in oligodendrocytes but the mechanism is poorly understood. Based on our assumption that particular oligodendrocyte-lineage-specific transcription factors regulate CGT expression, we co-expressed a series of candidate transcription factors with the human CGT promoter-driving luciferase expression in oligodendroglioma cells to measure the promoter activity. We found that Nkx2.2 strongly activated the CGT promoter. In addition, we identified a novel repressive DNA element in the first intron of CGT and OLIG2, an oligodendrocyte-specific transcription factor, as a binding protein of this element. Moreover, overexpression of OLIG2 completely canceled the activating effect of Nkx2.2 on CGT promoter activity. Expression of CGT mRNA was also upregulated by Nkx2.2, but this upregulation was cancelled by co-expression of OLIG2 with Nkx2.2. Our study suggests that CGT expression is controlled by balanced expression of the negative modulator OLIG2 and positive regulator Nkx2.2, providing new insights into how expression of GalCer is tightly regulated in cell-type- and stage-specific manners.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/biossíntese , Proteínas de Homeodomínio/biossíntese , Esclerose Múltipla/genética , N-Acilesfingosina Galactosiltransferase/genética , Proteínas do Tecido Nervoso/biossíntese , Fatores de Transcrição/biossíntese , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diferenciação Celular/genética , Galactosilceramidas/biossíntese , Galactosilceramidas/metabolismo , Regulação Enzimológica da Expressão Gênica/genética , Células HeLa , Proteína Homeobox Nkx-2.2 , Proteínas de Homeodomínio/metabolismo , Humanos , Esclerose Múltipla/patologia , Bainha de Mielina/metabolismo , Bainha de Mielina/patologia , N-Acilesfingosina Galactosiltransferase/biossíntese , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares , Fator de Transcrição 2 de Oligodendrócitos , Oligodendroglia/enzimologia , Oligodendroglia/metabolismo , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo , Proteínas de Peixe-Zebra
15.
PLoS One ; 8(7): e67011, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23874406

RESUMO

BACKGROUND: Influenza virus attaches to sialic acid residues on the surface of host cells via the hemagglutinin (HA), a glycoprotein expressed on the viral envelope, and enters into the cytoplasm by receptor-mediated endocytosis. The viral genome is released and transported in to the nucleus, where transcription and replication take place. However, cellular factors affecting the influenza virus infection such as the cell cycle remain uncharacterized. METHODS/RESULTS: To resolve the influence of cell cycle on influenza virus infection, we performed a single-virus infection analysis using optical tweezers. Using this newly developed single-virus infection system, the fluorescence-labeled influenza virus was trapped on a microchip using a laser (1064 nm) at 0.6 W, transported, and released onto individual H292 human lung epithelial cells. Interestingly, the influenza virus attached selectively to cells in the G1-phase. To clarify the molecular differences between cells in G1- and S/G2/M-phase, we performed several physical and chemical assays. Results indicated that: 1) the membranes of cells in G1-phase contained greater amounts of sialic acids (glycoproteins) than the membranes of cells in S/G2/M-phase; 2) the membrane stiffness of cells in S/G2/M-phase is more rigid than those in G1-phase by measurement using optical tweezers; and 3) S/G2/M-phase cells contained higher content of Gb3, Gb4 and GlcCer than G1-phase cells by an assay for lipid composition. CONCLUSIONS: A novel single-virus infection system was developed to characterize the difference in influenza virus susceptibility between G1- and S/G2/M-phase cells. Differences in virus binding specificity were associated with alterations in the lipid composition, sialic acid content, and membrane stiffness. This single-virus infection system will be useful for studying the infection mechanisms of other viruses.


Assuntos
Fase G1/fisiologia , Vírus da Influenza A/fisiologia , Influenza Humana/fisiopatologia , Internalização do Vírus , Carbocianinas , Linhagem Celular Tumoral , Cromatografia em Camada Fina , Primers do DNA/genética , Fluorescência , Humanos , Procedimentos Analíticos em Microchip , Ácido N-Acetilneuramínico , Pinças Ópticas , Reação em Cadeia da Polimerase Via Transcriptase Reversa
16.
Biochim Biophys Acta ; 1831(9): 1475-85, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23770033

RESUMO

Ceramide, cholesterol, and phosphatidic acid are major basic structures for cell membrane lipids. These lipids are modified with glucose to generate glucosylceramide (GlcCer), cholesterylglucoside (ChlGlc), and phosphatidylglucoside (PtdGlc), respectively. Glucosylation dramatically changes the functional properties of lipids. For instance, ceramide acts as a strong tumor suppressor that causes apoptosis and cell cycle arrest, while GlcCer has an opposite effect, downregulating ceramide activities. All glucosylated lipids are enriched in lipid rafts or microdomains and play fundamental roles in a variety of cellular processes. In this review, we discuss the biological functions and metabolism of these three glucosylated lipids.


Assuntos
Glucosídeos/metabolismo , Glucosilceramidas/metabolismo , Glicerofosfolipídeos/metabolismo , Glicolipídeos/metabolismo , Animais , Humanos , Microdomínios da Membrana
17.
Biochem Biophys Res Commun ; 433(2): 170-4, 2013 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-23485465

RESUMO

HA14-1 is a Bcl-2 inhibitor that is widely used for studies of apoptosis. In the course of searching for a ceramide glucosyltransferase inhibitor that catalyzes the first glycosylation step of glycosphingolipid synthesis, we unexpectedly found that HA-14-1 also has the ability to inhibit ceramide glucosyltransferase. The IC50 value of HA14-1 against ceramide glucosyltransferase is 4.5µM, which is lower than that reported for Bcl-2 in vitro. Kinetic analyses revealed that HA14-1 is a competitive and mixed-type inhibitor with respect to C6-NBD-ceramide and UDP-glucose, respectively.


Assuntos
Benzopiranos/farmacologia , Glucosiltransferases/antagonistas & inibidores , Nitrilas/farmacologia , 4-Cloro-7-nitrobenzofurazano/análogos & derivados , 4-Cloro-7-nitrobenzofurazano/farmacologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Ceramidas/metabolismo , Ceramidas/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Inibidores Enzimáticos/farmacologia , Glucosiltransferases/metabolismo , Humanos , Concentração Inibidora 50 , Cinética , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/metabolismo , Camundongos , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores
18.
Mol Aspects Med ; 34(2-3): 586-9, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23506891

RESUMO

The acetyl-CoA (Ac-CoA) transporter, ACATN is a multiple (11 or 12) transmembrane protein in the endoplasmic reticulum. Ac-CoA is transported into the lumen of the endoplasmic reticulum/Golgi apparatus, where it serves as the substrate of acetyltransferases that modify a variety of molecules including the sialic acid residues of gangliosides and lysine residues of membrane proteins. The ACATN gene, assigned as SLC33A1, was cloned from human melanoma cells and encodes the ACATN/ACATN1 (Acetyl-CoA Transporter 1) protein. Although homologs of this family of proteins have been identified in lower organisms such as Escherichia coli, Drosophila melanogaster and Caenorhabditis elegans, only one member of this SLC33A1 family has been identified. Although acetylated gangliosides are synthesized in the luminal Golgi membrane and show a highly tissue-specific distribution, ACATN1 is enriched in the ER membrane and is ubiquitously expressed. Phylogenetically, the SLC33A1 gene is highly conserved, suggesting that it is particularly significant. In fact, ACATN1 is essential for motor neuron viability. SLC33A1 is associated with neurodegenerative disorders such as sporadic amyotrophic lateral sclerosis (ALS) and Spastic Paraplegia 42, in the Chinese population.


Assuntos
Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/fisiologia , Família Multigênica/genética , Doenças Neurodegenerativas/genética , Complexo de Golgi/metabolismo , Humanos , Proteínas de Membrana Transportadoras/metabolismo , Modelos Biológicos , Neurônios Motores/metabolismo , Filogenia , Especificidade da Espécie
19.
Sci Signal ; 5(251): ra85, 2012 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-23169819

RESUMO

A genome-wide association study identified a strong correlation between body mass index and the presence of a 21-kb copy number variation upstream of the human GPRC5B gene; however, the functional role of GPRC5B in obesity remains unknown. We report that GPRC5B-deficient mice were protected from diet-induced obesity and insulin resistance because of reduced inflammation in their white adipose tissue. GPRC5B is a lipid raft-associated transmembrane protein that contains multiple phosphorylated residues in its carboxyl terminus. Phosphorylation of GPRC5B by the tyrosine kinase Fyn and the subsequent direct interaction with Fyn through the Fyn Src homology 2 (SH2) domain were critical for the initiation and progression of inflammatory signaling in adipose tissue. We demonstrated that a GPRC5B mutant lacking the direct binding site for Fyn failed to activate a positive feedback loop of nuclear factor κB-inhibitor of κB kinase ε signaling. These findings suggest that GPRC5B may be a major node in adipose signaling systems linking diet-induced obesity to type 2 diabetes and may open new avenues for therapeutic approaches to diabetic progression.


Assuntos
Adipócitos/metabolismo , Inflamação/metabolismo , Resistência à Insulina/genética , NF-kappa B/metabolismo , Obesidade/metabolismo , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/genética , Análise de Variância , Animais , Sítios de Ligação/genética , Índice de Massa Corporal , Cromatografia de Afinidade , Cromatografia em Gel , Células HEK293 , Humanos , Imunoprecipitação , Espectrometria de Massas , Camundongos , Microscopia Confocal , Fosforilação , Reação em Cadeia da Polimerase em Tempo Real , Receptores Acoplados a Proteínas G/deficiência
20.
Structure ; 20(9): 1585-95, 2012 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-22863568

RESUMO

The leukocyte cell-surface antigen CD38 is the major nicotinamide adenide dinucleotide glycohydrolase in mammals, and its ectoenzyme activity is involved in calcium mobilization. CD38 is also a raft-dependent signaling molecule. CD38 forms a tetramer on the cell surface, but the structural basis and the functional significance of tetramerization have remained unexplored. We identified the interfaces contributing to the homophilic interaction of mouse CD38 by site-specific crosslinking on the cell surface with an expanded genetic code, based on a crystallographic analysis. A combination of the three interfaces enables CD38 to tetramerize: one interface involving the juxtamembrane α-helix is responsible for the formation of the core dimer, which is further dimerized via the other two interfaces. This dimerization of dimers is required for the catalytic activity and the localization of CD38 in membrane rafts. The glycosylation prevents further self-association of the tetramer. Accordingly, the tetrameric interaction underlies the multifaceted actions of CD38.


Assuntos
ADP-Ribosil Ciclase 1/química , Glicoproteínas de Membrana/química , Microdomínios da Membrana/metabolismo , Multimerização Proteica , ADP-Ribosil Ciclase 1/genética , ADP-Ribosil Ciclase 1/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Linhagem Celular , Cromatografia em Gel , Reagentes de Ligações Cruzadas/química , Cristalografia por Raios X , Cistina/química , Glicosilação , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Lipídeos de Membrana/metabolismo , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Domínios e Motivos de Interação entre Proteínas , Processamento de Proteína Pós-Traducional , Estabilidade Proteica , Estrutura Quaternária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA