Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant J ; 74(4): 701-12, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23451734

RESUMO

Genome sequences of plant fungal pathogens have enabled the identification of effectors that cooperatively modulate the cellular environment for successful fungal growth and suppress host defense. Identification and characterization of novel effector proteins are crucial for understanding pathogen virulence and host-plant defense mechanisms. Previous reports indicate that the Pseudomonas syringae pv. tomato DC3000 type III secretion system (T3SS) can be used to study how non-bacterial effectors manipulate dicot plant cell function using the effector detector vector (pEDV) system. Here we report a pEDV-based effector delivery system in which the T3SS of Burkholderia glumae, an emerging rice pathogen, is used to translocate the AVR-Pik and AVR-Pii effectors of the fungal pathogen Magnaporthe oryzae to rice cytoplasm. The translocated AVR-Pik and AVR-Pii showed avirulence activity when tested in rice cultivars containing the cognate R genes. AVR-Pik reduced and delayed the hypersensitive response triggered by B. glumae in the non-host plant Nicotiana benthamiana, indicative of an immunosuppressive virulence activity. AVR proteins fused with fluorescent protein and nuclear localization signal were delivered by B. glumae T3SS and observed in the nuclei of infected cells in rice, wheat, barley and N. benthamiana. Our bacterial T3SS-enabled eukaryotic effector delivery and subcellular localization assays provide a useful method for identifying and studying effector functions in monocot plants.


Assuntos
Proteínas de Bactérias/metabolismo , Burkholderia/metabolismo , Magnaporthe/patogenicidade , Oryza/metabolismo , Doenças das Plantas/imunologia , Proteínas de Bactérias/genética , Burkholderia/genética , Burkholderia/patogenicidade , Citoplasma/metabolismo , Vetores Genéticos , Hordeum/citologia , Hordeum/genética , Hordeum/metabolismo , Interações Hospedeiro-Patógeno , Hifas , Magnaporthe/genética , Magnaporthe/metabolismo , Oryza/citologia , Oryza/genética , Oryza/microbiologia , Doenças das Plantas/microbiologia , Folhas de Planta/citologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Transporte Proteico , Nicotiana/citologia , Nicotiana/genética , Nicotiana/metabolismo , Triticum/citologia , Triticum/genética , Triticum/metabolismo , Virulência
2.
PLoS Pathog ; 8(5): e1002711, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22589729

RESUMO

To search for virulence effector genes of the rice blast fungus, Magnaporthe oryzae, we carried out a large-scale targeted disruption of genes for 78 putative secreted proteins that are expressed during the early stages of infection of M. oryzae. Disruption of the majority of genes did not affect growth, conidiation, or pathogenicity of M. oryzae. One exception was the gene MC69. The mc69 mutant showed a severe reduction in blast symptoms on rice and barley, indicating the importance of MC69 for pathogenicity of M. oryzae. The mc69 mutant did not exhibit changes in saprophytic growth and conidiation. Microscopic analysis of infection behavior in the mc69 mutant revealed that MC69 is dispensable for appressorium formation. However, mc69 mutant failed to develop invasive hyphae after appressorium formation in rice leaf sheath, indicating a critical role of MC69 in interaction with host plants. MC69 encodes a hypothetical 54 amino acids protein with a signal peptide. Live-cell imaging suggested that fluorescently labeled MC69 was not translocated into rice cytoplasm. Site-directed mutagenesis of two conserved cysteine residues (Cys36 and Cys46) in the mature MC69 impaired function of MC69 without affecting its secretion, suggesting the importance of the disulfide bond in MC69 pathogenicity function. Furthermore, deletion of the MC69 orthologous gene reduced pathogenicity of the cucumber anthracnose fungus Colletotrichum orbiculare on both cucumber and Nicotiana benthamiana leaves. We conclude that MC69 is a secreted pathogenicity protein commonly required for infection of two different plant pathogenic fungi, M. oryzae and C. orbiculare pathogenic on monocot and dicot plants, respectively.


Assuntos
Colletotrichum/patogenicidade , Proteínas Fúngicas/metabolismo , Magnaporthe/patogenicidade , Doenças das Plantas/microbiologia , Sequência de Aminoácidos , Colletotrichum/genética , Cucumis sativus/microbiologia , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Hordeum/microbiologia , Magnaporthe/genética , Mutação , Oryza/microbiologia , Deleção de Sequência , Nicotiana/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA