RESUMO
It is essential to employ efficient measures to prevent the transmission of pathogenic agents during a pandemic. One such method involves using hypochlorous acid (HClO) solution. The oxidative properties of HClO water (HAW) can contribute to its ability to eliminate viral particles. Here, we examined a highly purified slightly acidic hypochlorous acid water (Hp-SA-HAW) obtained from the reverse osmosis membrane treatment of an electrolytically-generated SA-HAW for its anti-viral activity and mode of action on viral proteins. Hp-SA-HAW exhibited broad-spectrum antiviral effects against various viruses, including adenovirus, hepatitis B virus, Japanese encephalitis virus (JEV), and rotavirus. Additionally, Hp-SA-HAW treatment dose-dependently resulted in irreversibly aggregated multimers of the JEV envelope and capsid proteins. However, Hp-SA-HAW treatment had no discernible effect on viral RNA, indicating that Hp-SA-HAW acts against amino acids rather than nucleic acids. Furthermore, Hp-SA-HAW substantially reduced the infectivity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), including the ancestral variant and other multiple variants. Hp-SA-HAW treatment induced the aggregation of the SARS-CoV-2 spike and nuclear proteins and disrupted the binding of the purified spike protein of SARS-CoV-2 to human ACE2. This study demonstrates that the broad-spectrum virucidal activity of highly purified HClO is attributed to viral protein aggregation of virion via protein oxidation.
RESUMO
Human noroviruses (HuNoVs) are acute viral gastroenteritis pathogens that affect all age groups, yet no approved vaccines and drugs to treat HuNoV infection are available. In this study, we screened an antiviral compound library to identify compound(s) showing anti-HuNoV activity using a human intestinal enteroid (HIE) culture system in which HuNoVs are able to replicate reproducibly. Dasabuvir (DSB), which has been developed as an anti-hepatitis C virus agent, was found to inhibit HuNoV infection in HIEs at micromolar concentrations. Dasabuvir also inhibited severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and human rotavirus A (RVA) infection in HIEs. To our knowledge, this is the first study to screen an antiviral compound library for HuNoV using HIEs, and we successfully identified dasabuvir as a novel anti-HuNoV inhibitor that warrants further investigation. IMPORTANCE Although there is an urgent need to develop effective antiviral therapy directed against HuNoV infection, compound screening to identify anti-HuNoV drug candidates has not been reported so far. Using a human HIE culture system, our compound screening successfully identified dasabuvir as a novel anti-HuNoV inhibitor. Dasabuvir's inhibitory effect was also demonstrated in the cases of SARS-CoV-2 and RVA infection, highlighting the usefulness of the HIE platform for screening antiviral agents against various viruses that target the intestines.
Assuntos
2-Naftilamina/farmacologia , Antivirais/farmacologia , Intestinos/virologia , Organoides/virologia , Bibliotecas de Moléculas Pequenas/farmacologia , Sulfonamidas/farmacologia , Uracila/análogos & derivados , Biópsia , Infecções por Caliciviridae/tratamento farmacológico , Linhagem Celular , Humanos , Intestinos/efeitos dos fármacos , Intestinos/patologia , Organoides/efeitos dos fármacos , Rotavirus/efeitos dos fármacos , Infecções por Rotavirus/tratamento farmacológico , SARS-CoV-2/efeitos dos fármacos , Uracila/farmacologia , Tratamento Farmacológico da COVID-19RESUMO
Immunoevasins are viral proteins that prevent antigen presentation on major histocompatibility complex (MHC) class I, thus evading host immune recognition. Hepatitis C virus (HCV) evades immune surveillance to induce chronic infection; however, how HCV-infected hepatocytes affect immune cells and evade immune recognition remains unclear. Herein, we demonstrate that HCV core protein functions as an immunoevasin. Its expression interfered with the maturation of MHC class I molecules catalyzed by the signal peptide peptidase (SPP) and induced their degradation via HMG-CoA reductase degradation 1 homolog, thereby impairing antigen presentation to CD8+ T cells. The expression of MHC class I in the livers of HCV core transgenic mice and chronic hepatitis C patients was impaired but was restored in patients achieving sustained virological response. Finally, we show that the human cytomegalovirus US2 protein, possessing a transmembrane region structurally similar to the HCV core protein, targets SPP to impair MHC class I molecule expression. Thus, SPP represents a potential target for the impairment of MHC class I molecules by DNA and RNA viruses.
Assuntos
Ácido Aspártico Endopeptidases/metabolismo , Hepacivirus/fisiologia , Evasão da Resposta Imune/fisiologia , Animais , Apresentação de Antígeno/imunologia , Linhagem Celular , Regulação para Baixo , Hepacivirus/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Camundongos , Proteínas do Core Viral/fisiologiaRESUMO
Hepatitis C virus (HCV) utilizes cellular factors for efficient propagation. Ubiquitin is covalently conjugated to the substrate to alter its stability or to modulate signal transduction. In this study, we examined the importance of ubiquitination for HCV propagation. We found that inhibition of deubiquitinating enzymes (DUBs) or overexpression of nonspecific DUBs impaired HCV replication, suggesting that ubiquitination regulates HCV replication. To identify specific DUBs involved in HCV propagation, we set up RNA interference (RNAi) screening against DUBs and successfully identified ubiquitin-specific protease 15 (USP15) as a novel host factor for HCV propagation. Our studies showed that USP15 is involved in translation of HCV RNA and production of infectious HCV particles. In addition, deficiency of USP15 in human hepatic cell lines (Huh7 and Hep3B/miR-122 cells) but not in a nonhepatic cell line (293T cells) impaired HCV propagation, suggesting that USP15 participates in HCV propagation through the regulation of hepatocyte-specific functions. Moreover, we showed that loss of USP15 had no effect on innate immune responses in vitro and in vivo We also found that USP15-deficient Huh7 cells showed reductions in the amounts of lipid droplets (LDs), and the addition of palmitic acids restored the production of infectious HCV particles. Taken together, these data suggest that USP15 participates in HCV propagation by regulating the translation of HCV RNA and the formation of LDs.IMPORTANCE Although ubiquitination has been shown to play important roles in the HCV life cycle, the roles of deubiquitinating enzymes (DUBs), which cleave ubiquitin chains from their substrates, in HCV propagation have not been investigated. Here, we identified USP15 as a DUB regulating HCV propagation. USP15 showed no interaction with viral proteins and no participation in innate immune responses. Deficiency of USP15 in Huh7 cells resulted in suppression of the translation of HCV RNA and reduction in the amounts of lipid droplets, and the addition of fatty acids partially restored the production of infectious HCV particles. These data suggest that USP15 participates in HCV propagation in hepatic cells through the regulation of viral RNA translation and lipid metabolism.
Assuntos
Hepacivirus/genética , Hepatite C/metabolismo , Hepatite C/virologia , Gotículas Lipídicas/metabolismo , RNA Viral/genética , Proteases Específicas de Ubiquitina/metabolismo , Animais , Linhagem Celular , Linhagem Celular Tumoral , Chlorocebus aethiops , Regulação da Expressão Gênica/fisiologia , Células HEK293 , Hepatócitos/metabolismo , Hepatócitos/virologia , Humanos , Metabolismo dos Lipídeos/fisiologia , Fígado/metabolismo , Fígado/virologia , Interferência de RNA/fisiologia , Transdução de Sinais/genética , Proteases Específicas de Ubiquitina/genética , Ubiquitinação/genética , Células Vero , Replicação Viral/genéticaRESUMO
BCL2 family proteins including pro-survival proteins, BH3-only proteins and BAX/BAK proteins control mitochondria-mediated apoptosis to maintain cell homeostasis via the removal of damaged cells and pathogen-infected cells. In this study, we examined the roles of BCL2 proteins in the induction of apoptosis in cells upon infection with flaviviruses, such as Japanese encephalitis virus, Dengue virus and Zika virus. We showed that survival of the infected cells depends on BCLXL, a pro-survival BCL2 protein due to suppression of the expression of another pro-survival protein, MCL1. Treatment with BCLXL inhibitors, as well as deficient BCLXL gene expression, induced BAX/BAK-dependent apoptosis upon infection with flaviviruses. Flavivirus infection attenuates cellular protein synthesis, which confers reduction of short-half-life proteins like MCL1. Inhibition of BCLXL increased phagocytosis of virus-infected cells by macrophages, thereby suppressing viral dissemination and chemokine production. Furthermore, we examined the roles of BCLXL in the death of JEV-infected cells during in vivo infection. Haploinsufficiency of the BCLXL gene, as well as administration of BH3 mimetic compounds, increased survival rate after challenge of JEV infection and suppressed inflammation. These results suggest that BCLXL plays a crucial role in the survival of cells infected with flaviviruses, and that BCLXL may provide a novel antiviral target to suppress propagation of the family of Flaviviridae viruses.
Assuntos
Flavivirus/patogenicidade , Proteína bcl-X/fisiologia , Animais , Apoptose/genética , Apoptose/fisiologia , Linhagem Celular , Sobrevivência Celular/genética , Sobrevivência Celular/fisiologia , Chlorocebus aethiops , Vírus da Dengue/patogenicidade , Vírus da Dengue/fisiologia , Vírus da Encefalite Japonesa (Espécie)/patogenicidade , Vírus da Encefalite Japonesa (Espécie)/fisiologia , Flavivirus/fisiologia , Infecções por Flavivirus/genética , Infecções por Flavivirus/patologia , Infecções por Flavivirus/fisiopatologia , Técnicas de Inativação de Genes , Células HEK293 , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Imunidade Inata , Camundongos , Camundongos Knockout , Modelos Biológicos , Proteína de Sequência 1 de Leucemia de Células Mieloides/antagonistas & inibidores , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/fisiologia , Células U937 , Células Vero , Replicação Viral/fisiologia , Zika virus/patogenicidade , Zika virus/fisiologia , Proteína bcl-X/antagonistas & inibidores , Proteína bcl-X/genéticaRESUMO
Signal peptide peptidase (SPP) is an intramembrane aspartic protease involved in the maturation of the core protein of hepatitis C virus (HCV). The processing of HCV core protein by SPP has been reported to be critical for the propagation and pathogenesis of HCV. Here we examined the inhibitory activity of inhibitors for γ-secretase, another intramembrane cleaving protease, against SPP, and our findings revealed that the dibenzoazepine-type structure in the γ-secretase inhibitors is critical for the inhibition of SPP. The spatial distribution showed that the γ-secretase inhibitor compound YO-01027 with the dibenzoazepine structure exhibits potent inhibiting activity against SPP in vitro and in vivo through the interaction of Val223 in SPP. Treatment with this SPP inhibitor suppressed the maturation of core proteins of all HCV genotypes without the emergence of drug-resistant viruses, in contrast to the treatment with direct-acting antivirals. YO-01027 also efficiently inhibited the propagation of protozoa such as Plasmodium falciparum and Toxoplasma gondii These data suggest that SPP is an ideal target for the development of therapeutics not only against chronic hepatitis C but also against protozoiasis.
Assuntos
Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Antiprotozoários/farmacologia , Antivirais/farmacologia , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Dibenzazepinas/farmacologia , Hepacivirus/efeitos dos fármacos , Inibidores de Proteases/farmacologia , Animais , Antiprotozoários/química , Antivirais/química , Linhagem Celular , Dibenzazepinas/química , Células HEK293 , Hepacivirus/genética , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Modelos Moleculares , Plasmodium falciparum/efeitos dos fármacos , Inibidores de Proteases/química , Relação Estrutura-Atividade , Toxoplasma/efeitos dos fármacos , Proteínas do Core Viral/antagonistas & inibidores , Replicação Viral/efeitos dos fármacosRESUMO
Apoptosis is a type of programmed cell death that regulates cellular homeostasis by removing damaged or unnecessary cells. Its importance in host defenses is highlighted by the observation that many viruses evade, obstruct, or subvert apoptosis, thereby blunting the host immune response. Infection with Flaviviruses such as Japanese encephalitis virus (JEV), Dengue virus (DENV) and West Nile virus (WNV) has been shown to activate several signaling pathways such as endoplasmic reticulum (ER)-stress and AKT/PI3K pathway, resulting in activation or suppression of apoptosis in virus-infected cells. On the other hands, expression of some viral proteins induces or protects apoptosis. There is a discrepancy between induction and suppression of apoptosis during flavivirus infection because the experimental situation may be different, and strong links between apoptosis and other types of cell death such as necrosis may make it more difficult. In this paper, we review the effects of apoptosis on viral propagation and pathogenesis during infection with flaviviruses.
Assuntos
Apoptose/fisiologia , Infecções por Flavivirus/imunologia , Infecções por Flavivirus/metabolismo , Flavivirus/imunologia , Flavivirus/fisiologia , Animais , Morte Celular/imunologia , Morte Celular/fisiologia , Sobrevivência Celular , Vírus da Dengue/imunologia , Vírus da Dengue/fisiologia , Vírus da Encefalite Japonesa (Espécie)/imunologia , Vírus da Encefalite Japonesa (Espécie)/fisiologia , Retículo Endoplasmático/virologia , Interações Hospedeiro-Patógeno/imunologia , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Estágios do Ciclo de Vida , Linfoma de Células B , Neoplasias/terapia , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Estresse Fisiológico , Vírus do Nilo Ocidental/imunologia , Vírus do Nilo Ocidental/fisiologiaRESUMO
UNLABELLED: Hepatitis B virus (HBV) is a causative agent for chronic liver diseases such as hepatitis, cirrhosis, and hepatocellular carcinoma (HCC). HBx protein encoded by the HBV genome plays crucial roles not only in pathogenesis but also in replication of HBV. Although HBx has been shown to bind to a number of host proteins, the molecular mechanisms by which HBx regulates HBV replication are largely unknown. In this study, we identified jumonji C-domain-containing 5 (JMJD5) as a novel binding partner of HBx interacting in the cytoplasm. DNA microarray analysis revealed that JMJD5-knockout (JMJD5KO) Huh7 cells exhibited a significant reduction in the expression of transcriptional factors involved in hepatocyte differentiation, such as HNF4A, CEBPA, and FOXA3. We found that hydroxylase activity of JMJD5 participates in the regulation of these transcriptional factors. Moreover, JMJD5KO Huh7 cells exhibited a severe reduction in HBV replication, and complementation of HBx expression failed to rescue replication of a mutant HBV deficient in HBx, suggesting that JMJD5 participates in HBV replication through an interaction with HBx. We also found that replacing Gly(135) with Glu in JMJD5 abrogates binding with HBx and replication of HBV. Moreover, the hydroxylase activity of JMJD5 was crucial for HBV replication. Collectively, these results suggest that direct interaction of JMJD5 with HBx facilitates HBV replication through the hydroxylase activity of JMJD5. IMPORTANCE: HBx protein encoded by hepatitis B virus (HBV) plays important roles in pathogenesis and replication of HBV. We identified jumonji C-domain-containing 5 (JMJD5) as a novel binding partner to HBx. JMJD5 was shown to regulate several transcriptional factors to maintain hepatocyte function. Although HBx had been shown to support HBV replication, deficiency of JMJD5 abolished contribution of HBx in HBV replication, suggesting that HBx-mediated HBV replication is largely dependent on JMJD5. We showed that hydroxylase activity of JMJD5 in the C terminus region is crucial for expression of HNF4A and replication of HBV. Furthermore, a mutant JMJD5 with Gly(135) replaced by Glu failed to interact with HBx and to rescue the replication of HBV in JMJD5-knockout cells. Taken together, our data suggest that interaction of JMJD5 with HBx facilitates HBV replication through the hydroxylase activity of JMJD5.