Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Heart ; 108(22): 1800-1806, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-35680379

RESUMO

OBJECTIVE: Established preclinical imaging assessments of heart failure (HF) risk are based on macrostructural cardiac remodelling. Given that microstructural alterations may also influence HF risk, particularly in women, we examined associations between microstructural alterations and incident HF. METHODS: We studied N=2511 adult participants (mean age 65.7±8.8 years, 56% women) of the Framingham Offspring Study who were free of cardiovascular disease at baseline. We employed texture analysis of echocardiography to quantify microstructural alteration, based on the high spectrum signal intensity coefficient (HS-SIC). We examined its relations to incident HF in sex-pooled and sex-specific Cox models accounting for traditional HF risk factors and macrostructural alterations. RESULTS: We observed 94 new HF events over 7.4±1.7 years. Individuals with higher HS-SIC had increased risk for incident HF (HR 1.67 per 1-SD in HS-SIC, 95% CI 1.31 to 2.13; p<0.0001). Adjusting for age and antihypertensive medication use, this association was significant in women (p=0.02) but not men (p=0.78). Adjusting for traditional risk factors (including body mass index, total/high-density lipoprotein cholesterol, blood pressure traits, diabetes and smoking) attenuated the association in women (HR 1.30, p=0.07), with mediation of HF risk by the HS-SIC seen for a majority of these risk factors. However, the HS-SIC association with HF in women remained significant after adjusting for relative wall thickness (representing macrostructure alteration) in addition to these risk factors (HR 1.47, p=0.02). CONCLUSIONS: Cardiac microstructural alterations are associated with elevated risk for HF, particularly in women. Microstructural alteration may identify sex-specific pathways by which individuals progress from risk factors to clinical HF.


Assuntos
Insuficiência Cardíaca , Adulto , Masculino , Feminino , Humanos , Pessoa de Meia-Idade , Idoso , Insuficiência Cardíaca/diagnóstico por imagem , Insuficiência Cardíaca/epidemiologia , Insuficiência Cardíaca/etiologia , Ecocardiografia , Fatores de Risco , Pressão Sanguínea , Modelos de Riscos Proporcionais
2.
Cardiovasc Ultrasound ; 20(1): 9, 2022 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-35369883

RESUMO

BACKGROUND: Immune-inflammatory myocardial disease contributes to multiple chronic cardiac processes, but access to non-invasive screening is limited. We have previously developed a method of echocardiographic texture analysis, called the high-spectrum signal intensity coefficient (HS-SIC) which assesses myocardial microstructure and previously associated with myocardial fibrosis. We aimed to determine whether this echocardiographic texture analysis of cardiac microstructure can identify inflammatory cardiac disease in the clinical setting. METHODS: We conducted a retrospective case-control study of 318 patients with distinct clinical myocardial pathologies and 20 healthy controls. Populations included myocarditis, atypical chest pain/palpitations, STEMI, severe aortic stenosis, acute COVID infection, amyloidosis, and cardiac transplantation with acute rejection, without current rejection but with prior rejection, and with no history of rejection. We assessed the HS-SIC's ability to differentiate between a broader diversity of clinical groups and healthy controls. We used Kruskal-Wallis tests to compare HS-SIC values measured in each of the clinical populations with those in the healthy control group and compared HS-SIC values between the subgroups of cardiac transplantation rejection status. RESULTS: For the total sample of N = 338, the mean age was 49.6 ± 20.9 years and 50% were women. The mean ± standard error of the mean of HS-SIC were: 0.668 ± 0.074 for controls, 0.552 ± 0.049 for atypical chest pain/palpitations, 0.425 ± 0.058 for myocarditis, 0.881 ± 0.129 for STEMI, 1.116 ± 0.196 for severe aortic stenosis, 0.904 ± 0.116 for acute COVID, and 0.698 ± 0.103 for amyloidosis. Among cardiac transplant recipients, HS-SIC values were 0.478 ± 0.999 for active rejection, 0.594 ± 0.091 for prior rejection, and 1.191 ± 0.442 for never rejection. We observed significant differences in HS-SIC between controls and myocarditis (P = 0.0014), active rejection (P = 0.0076), and atypical chest pain or palpitations (P = 0.0014); as well as between transplant patients with active rejection and those without current or prior rejection (P = 0.031). CONCLUSIONS: An echocardiographic method can be used to characterize tissue signatures of microstructural changes across a spectrum of cardiac disease including immune-inflammatory conditions.


Assuntos
COVID-19 , Cardiomiopatias , Miocardite , Adulto , Idoso , Estudos de Casos e Controles , Feminino , Rejeição de Enxerto/diagnóstico , Humanos , Pessoa de Meia-Idade , Miocardite/diagnóstico por imagem , Estudos Retrospectivos
3.
PLoS One ; 9(5): e97424, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24831515

RESUMO

The transition from healthy myocardium to hypertensive heart disease is characterized by a series of poorly understood changes in myocardial tissue microstructure. Incremental alterations in the orientation and integrity of myocardial fibers can be assessed using advanced ultrasonic image analysis. We used a modified algorithm to investigate left ventricular myocardial microstructure based on analysis of the reflection intensity at the myocardial-pericardial interface on B-mode echocardiographic images. We evaluated the extent to which the novel algorithm can differentiate between normal myocardium and hypertensive heart disease in humans as well as in a mouse model of afterload resistance. The algorithm significantly differentiated between individuals with uncomplicated essential hypertension (N = 30) and healthy controls (N = 28), even after adjusting for age and sex (P = 0.025). There was a trend in higher relative wall thickness in hypertensive individuals compared to controls (P = 0.08), but no difference between groups in left ventricular mass (P = 0.98) or total wall thickness (P = 0.37). In mice, algorithm measurements (P = 0.026) compared with left ventricular mass (P = 0.053) more clearly differentiated between animal groups that underwent fixed aortic banding, temporary aortic banding, or sham procedure, on echocardiography at 7 weeks after surgery. Based on sonographic signal intensity analysis, a novel imaging algorithm provides an accessible, non-invasive measure that appears to differentiate normal left ventricular microstructure from myocardium exposed to chronic afterload stress. The algorithm may represent a particularly sensitive measure of the myocardial changes that occur early in the course of disease progression.


Assuntos
Cardiopatias/fisiopatologia , Hipertensão/fisiopatologia , Processamento de Imagem Assistida por Computador/métodos , Miocárdio/patologia , Adulto , Idoso , Algoritmos , Animais , Aorta/patologia , Pressão Sanguínea , Estudos de Casos e Controles , Modelos Animais de Doenças , Progressão da Doença , Ecocardiografia/métodos , Hipertensão Essencial , Feminino , Ventrículos do Coração , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade
4.
J Cell Biochem ; 110(4): 935-47, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20564193

RESUMO

Vascular calcification is a major risk factor for cardiovascular morbidity and mortality. Smooth muscle cells (SMCs) may play an important role in vascular cartilaginous metaplasia and calcification via reprogramming to the osteochondrogenic state. To study whether SM lineage reprogramming and thus matrix calcification is reversible and what the necessary regulatory factors are to reverse this process, we used cells isolated from calcifying arterial medias of 4-week-old matrix Gla protein knockout mice (MGP-/-SMCs). We found that vascular cells with an osteochondrogenic phenotype regained SMC properties (positive for SM22alpha and SM alpha-actin) and down-regulated osteochondrogenic gene expression (Runx2/Cbfa1 and osteopontin) upon culture in medium that favors SMC differentiation. Over time, the MGP-/- SMCs no longer expressed osteochondrogenic proteins and became indistinguishable from wild-type SMCs. Moreover, phenotypic switch of the restored SMCs to the osteochondrogenic state was re-induced by the pro-calcific factor, inorganic phosphate. Finally, loss- and gain-of-function studies of myocardin, a SM-specific transcription co-activator, and Runx2/Cbfa1, an osteochondrogenic transcription factor, revealed that upregulation of Runx2/Cbfa1, but not loss of myocardin, played a critical role in phosphate-induced SMC lineage reprogramming and calcification. These results are the first to demonstrate reversibility of vascular SMCs in the osteochondrogenic state in response to local environmental cues, and that myocardin-enforced SMC lineage allocation was not sufficient to block vascular calcification. On the other hand, Runx2/Cbfa1 was found to be a decisive factor identified in the process.


Assuntos
Condrogênese , Subunidade alfa 1 de Fator de Ligação ao Core/fisiologia , Músculo Liso/citologia , Proteínas Nucleares/fisiologia , Osteogênese , Transativadores/fisiologia , Animais , Sequência de Bases , Western Blotting , Cálcio/metabolismo , Linhagem da Célula , Células Cultivadas , Primers do DNA , Camundongos , Camundongos Knockout , Músculo Liso/metabolismo , Interferência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA