Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(37): eado5545, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39270020

RESUMO

Inositol 1,4,5-trisphosphate (IP3) receptor type 1 (ITPR1), 2 (ITPR2), and 3 (ITPR3) encode the IP3 receptor (IP3R), a key player in intracellular calcium release. In four unrelated patients, we report that an identical ITPR3 de novo variant-NM_002224.3:c.7570C>T, p.Arg2524Cys-causes, through a dominant-negative effect, a complex multisystemic disorder with immunodeficiency. This leads to defective calcium homeostasis, mitochondrial malfunction, CD4+ lymphopenia, a quasi-absence of naïve CD4+ and CD8+ cells, an increase in memory cells, and a distinct TCR repertoire. The calcium defect was recapitulated in Jurkat knock-in. Site-directed mutagenesis displayed the exquisite sensitivity of Arg2524 to any amino acid change. Despite the fact that all patients had severe immunodeficiency, they also displayed variable multisystemic involvements, including ectodermal dysplasia, Charcot-Marie-Tooth disease, short stature, and bone marrow failure. In conclusion, unlike previously reported ITPR1-3 deficiencies leading to narrow, mainly neurological phenotypes, a recurrent dominant ITPR3 variant leads to a multisystemic disease, defining a unique role for IP3R3 in the tetrameric IP3R complex.


Assuntos
Receptores de Inositol 1,4,5-Trifosfato , Humanos , Receptores de Inositol 1,4,5-Trifosfato/genética , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Masculino , Feminino , Cálcio/metabolismo , Criança , Mutação , Células Jurkat , Pré-Escolar , Genes Dominantes , Linhagem , Fenótipo
2.
Nat Commun ; 15(1): 2288, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480730

RESUMO

Human leukocyte antigen (HLA) class I peptide ligands (HLAIps) are key targets for developing vaccines and immunotherapies against infectious pathogens or cancer cells. Identifying HLAIps is challenging due to their high diversity, low abundance, and patient individuality. Here, we develop a highly sensitive method for identifying HLAIps using liquid chromatography-ion mobility-tandem mass spectrometry (LC-IMS-MS/MS). In addition, we train a timsTOF-specific peak intensity MS2PIP model for tryptic and non-tryptic peptides and implement it in MS2Rescore (v3) together with the CCS predictor from ionmob. The optimized method, Thunder-DDA-PASEF, semi-selectively fragments singly and multiply charged HLAIps based on their IMS and m/z. Moreover, the method employs the high sensitivity mode and extended IMS resolution with fewer MS/MS frames (300 ms TIMS ramp, 3 MS/MS frames), doubling the coverage of immunopeptidomics analyses, compared to the proteomics-tailored DDA-PASEF (100 ms TIMS ramp, 10 MS/MS frames). Additionally, rescoring boosts the HLAIps identification by 41.7% to 33%, resulting in 5738 HLAIps from as little as one million JY cell equivalents, and 14,516 HLAIps from 20 million. This enables in-depth profiling of HLAIps from diverse human cell lines and human plasma. Finally, profiling JY and Raji cells transfected to express the SARS-CoV-2 spike protein results in 16 spike HLAIps, thirteen of which have been reported to elicit immune responses in human patients.


Assuntos
Peptídeos , Espectrometria de Massas em Tandem , Humanos , Espectrometria de Massas em Tandem/métodos , Peptídeos/química , Glicoproteína da Espícula de Coronavírus , Cromatografia Líquida , Antígenos de Histocompatibilidade Classe I/genética
3.
Nucleic Acids Res ; 51(W1): W338-W342, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37140039

RESUMO

Interest in the use of machine learning for peptide fragmentation spectrum prediction has been strongly on the rise over the past years, especially for applications in challenging proteomics identification workflows such as immunopeptidomics and the full-proteome identification of data independent acquisition spectra. Since its inception, the MS²PIP peptide spectrum predictor has been widely used for various downstream applications, mostly thanks to its accuracy, ease-of-use, and broad applicability. We here present a thoroughly updated version of the MS²PIP web server, which includes new and more performant prediction models for both tryptic- and non-tryptic peptides, for immunopeptides, and for CID-fragmented TMT-labeled peptides. Additionally, we have also added new functionality to greatly facilitate the generation of proteome-wide predicted spectral libraries, requiring only a FASTA protein file as input. These libraries also include retention time predictions from DeepLC. Moreover, we now provide pre-built and ready-to-download spectral libraries for various model organisms in multiple DIA-compatible spectral library formats. Besides upgrading the back-end models, the user experience on the MS²PIP web server is thus also greatly enhanced, extending its applicability to new domains, including immunopeptidomics and MS3-based TMT quantification experiments. MS²PIP is freely available at https://iomics.ugent.be/ms2pip/.


Assuntos
Proteoma , Proteômica , Espectrometria de Massas em Tandem , Peptídeos/química
4.
Mol Cell Proteomics ; 21(8): 100266, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35803561

RESUMO

Immunopeptidomics aims to identify major histocompatibility complex (MHC)-presented peptides on almost all cells that can be used in anti-cancer vaccine development. However, existing immunopeptidomics data analysis pipelines suffer from the nontryptic nature of immunopeptides, complicating their identification. Previously, peak intensity predictions by MS2PIP and retention time predictions by DeepLC have been shown to improve tryptic peptide identifications when rescoring peptide-spectrum matches with Percolator. However, as MS2PIP was tailored toward tryptic peptides, we have here retrained MS2PIP to include nontryptic peptides. Interestingly, the new models not only greatly improve predictions for immunopeptides but also yield further improvements for tryptic peptides. We show that the integration of new MS2PIP models, DeepLC, and Percolator in one software package, MS2Rescore, increases spectrum identification rate and unique identified peptides with 46% and 36% compared to standard Percolator rescoring at 1% FDR. Moreover, MS2Rescore also outperforms the current state-of-the-art in immunopeptide-specific identification approaches. Altogether, MS2Rescore thus allows substantially improved identification of novel epitopes from existing immunopeptidomics workflows.


Assuntos
Proteômica , Espectrometria de Massas em Tandem , Algoritmos , Peptídeos , Proteínas
5.
Microbiol Spectr ; 9(2): e0069221, 2021 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-34468196

RESUMO

Sulfur metabolism in fuel-biodesulfurizing bacteria and the underlying physiological adaptations are not understood, which has impeded the development of a commercially viable bioprocess for fuel desulfurization. To fill these knowledge gaps, we performed comparative proteomics and untargeted metabolomics in cultures of the biodesulfurization reference strain Rhodococcus qingshengii IGTS8 grown on either inorganic sulfate or the diesel-borne organosulfur compound dibenzothiophene as a sole sulfur source. Dibenzothiophene significantly altered the biosynthesis of many sulfur metabolism proteins and metabolites in a growth phase-dependent manner, which enabled us to reconstruct the first experimental model for sulfur metabolism in a fuel-biodesulfurizing bacterium. All key pathways related to assimilatory sulfur metabolism were represented in the sulfur proteome, including uptake of the sulfur sources, sulfur acquisition, and assimilatory sulfate reduction, in addition to biosynthesis of key sulfur-containing metabolites such as S-adenosylmethionine, coenzyme A, biotin, thiamin, molybdenum cofactor, mycothiol, and ergothioneine (low-molecular weight thiols). Fifty-two proteins exhibited significantly different abundance during at least one growth phase. Sixteen proteins were uniquely detected and 47 proteins were significantly more abundant in the dibenzothiophene culture during at least one growth phase. The sulfate-free dibenzothiophene-containing culture reacted to sulfate starvation by restricting sulfur assimilation, enforcing sulfur-sparing, and maintaining redox homeostasis. Biodesulfurization triggered alternative pathways for sulfur assimilation different from those operating in the inorganic sulfate culture. Sulfur metabolism reprogramming and metabolic switches in the dibenzothiophene culture were manifested in limiting sulfite reduction and biosynthesis of cysteine, while boosting the production of methionine via the cobalamin-independent pathway, as well as the biosynthesis of the redox buffers mycothiol and ergothioneine. The omics data underscore the key role of sulfur metabolism in shaping the biodesulfurization phenotype and highlight potential targets for improving the biodesulfurization catalytic activity via metabolic engineering. IMPORTANCE For many decades, research on biodesulfurization of fossil fuels was conducted amid a large gap in knowledge of sulfur metabolism and its regulation in fuel-biodesulfurizing bacteria, which has impeded the development of a commercially viable bioprocess. In addition, lack of understanding of biodesulfurization-associated metabolic and physiological adaptations prohibited the development of efficient biodesulfurizers. Our integrated omics-based findings reveal the assimilatory sulfur metabolism in the biodesulfurization reference strain Rhodococcus qingshengii IGTS8 and show how sulfur metabolism and oxidative stress response were remodeled and orchestrated to shape the biodesulfurization phenotype. Our findings not only explain the frequently encountered low catalytic activity of native fuel-biodesulfurizing bacteria but also uncover unprecedented potential targets in sulfur metabolism that could be exploited via metabolic engineering to boost the biodesulfurization catalytic activity, a prerequisite for commercial application.


Assuntos
Metabolômica , Proteômica , Rhodococcus/genética , Rhodococcus/metabolismo , Enxofre/metabolismo , Fenômenos Bioquímicos , Cisteína/biossíntese , Glicopeptídeos , Inositol , Família Multigênica , Tiofenos/metabolismo
6.
J Exp Med ; 217(12)2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-32766723

RESUMO

The Nck-associated protein 1-like (NCKAP1L) gene, alternatively called hematopoietic protein 1 (HEM-1), encodes a hematopoietic lineage-specific regulator of the actin cytoskeleton. Nckap1l-deficient mice have anomalies in lymphocyte development, phagocytosis, and neutrophil migration. Here we report, for the first time, NCKAP1L deficiency cases in humans. In two unrelated patients of Middle Eastern origin, recessive mutations in NCKAP1L abolishing protein expression led to immunodeficiency, lymphoproliferation, and hyperinflammation with features of hemophagocytic lymphohistiocytosis. Immunophenotyping showed an inverted CD4/CD8 ratio with a major shift of both CD4+ and CD8+ cells toward memory compartments, in line with combined RNA-seq/proteomics analyses revealing a T cell exhaustion signature. Consistent with the core function of NCKAP1L in the reorganization of the actin cytoskeleton, patients' T cells displayed impaired early activation, immune synapse morphology, and leading edge formation. Moreover, knockdown of nckap1l in zebrafish led to defects in neutrophil migration. Hence, NCKAP1L mutations lead to broad immune dysregulation in humans, which could be classified within actinopathies.


Assuntos
Síndromes de Imunodeficiência/complicações , Inflamação/complicações , Transtornos Linfoproliferativos/complicações , Proteínas de Membrana/metabolismo , Actinas/metabolismo , Animais , Degranulação Celular , Proliferação de Células , Criança , Citotoxicidade Imunológica , Família , Feminino , Homozigoto , Humanos , Síndromes de Imunodeficiência/imunologia , Sinapses Imunológicas/metabolismo , Lactente , Inflamação/imunologia , Inflamação/patologia , Ativação Linfocitária/imunologia , Transtornos Linfoproliferativos/imunologia , Masculino , Proteínas de Membrana/química , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Mutação/genética , Linhagem , Fenótipo , Síndrome , Peixe-Zebra
7.
Cancer Immunol Res ; 8(9): 1122-1138, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32665262

RESUMO

Inherent immune suppression represents a major challenge in the treatment of human cancer. The extracellular matrix molecule tenascin-C promotes cancer by multiple mechanisms, yet the roles of tenascin-C in tumor immunity are incompletely understood. Using a 4NQO-induced oral squamous cell carcinoma (OSCC) model with abundant and absent tenascin-C, we demonstrated that tenascin-C enforced an immune-suppressive lymphoid stroma via CCL21/CCR7 signaling, leading to increased metastatic tumors. Through TLR4, tenascin-C increased expression of CCR7 in CD11c+ myeloid cells. By inducing CCL21 in lymphatic endothelial cells via integrin α9ß1 and binding to CCL21, tenascin-C immobilized CD11c+ cells in the stroma. Inversion of the lymph node-to-tumor CCL21 gradient, recruitment of T regulatory cells, high expression of anti-inflammatory cytokines, and matrisomal components were hallmarks of the tenascin-C-instructed lymphoid stroma. Ablation of tenascin-C or CCR7 blockade inhibited the lymphoid immune-suppressive stromal properties, reducing tumor growth, progression, and metastasis. Thus, targeting CCR7 could be relevant in human head and neck tumors, as high tenascin-C expression and an immune-suppressive stroma correlate to poor patient survival.


Assuntos
Neoplasias Bucais/imunologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/imunologia , Tenascina/imunologia , Animais , Quimiocina CCL21/imunologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neoplasias Bucais/patologia , Receptores CCR7/imunologia , Proteínas Recombinantes/farmacologia , Linfócitos T Reguladores/imunologia , Tenascina/farmacologia , Microambiente Tumoral/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA