Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 7725, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38001082

RESUMO

Current therapies for myeloproliferative neoplasms (MPNs) improve symptoms but have limited effect on tumor size. In preclinical studies, tamoxifen restored normal apoptosis in mutated hematopoietic stem/progenitor cells (HSPCs). TAMARIN Phase-II, multicenter, single-arm clinical trial assessed tamoxifen's safety and activity in patients with stable MPNs, no prior thrombotic events and mutated JAK2V617F, CALRins5 or CALRdel52 peripheral blood allele burden ≥20% (EudraCT 2015-005497-38). 38 patients were recruited over 112w and 32 completed 24w-treatment. The study's A'herns success criteria were met as the primary outcome ( ≥ 50% reduction in mutant allele burden at 24w) was observed in 3/38 patients. Secondary outcomes included ≥25% reduction at 24w (5/38), ≥50% reduction at 12w (0/38), thrombotic events (2/38), toxicities, hematological response, proportion of patients in each IWG-MRT response category and ELN response criteria. As exploratory outcomes, baseline analysis of HSPC transcriptome segregates responders and non-responders, suggesting a predictive signature. In responder HSPCs, longitudinal analysis shows high baseline expression of JAK-STAT signaling and oxidative phosphorylation genes, which are downregulated by tamoxifen. We further demonstrate in preclinical studies that in JAK2V617F+ cells, 4-hydroxytamoxifen inhibits mitochondrial complex-I, activates integrated stress response and decreases pathogenic JAK2-signaling. These results warrant further investigation of tamoxifen in MPN, with careful consideration of thrombotic risk.


Assuntos
Transtornos Mieloproliferativos , Neoplasias , Humanos , Transtornos Mieloproliferativos/tratamento farmacológico , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/patologia , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Transdução de Sinais , Neoplasias/metabolismo , Tamoxifeno/uso terapêutico , Tamoxifeno/metabolismo , Mutação , Calreticulina/genética , Calreticulina/metabolismo
2.
Sci Rep ; 13(1): 6738, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37185607

RESUMO

Respiratory complex I is a major cellular energy transducer located in the inner mitochondrial membrane. Its inhibition by rotenone, a natural isoflavonoid, has been used for centuries by indigenous peoples to aid in fishing and, more recently, as a broad-spectrum pesticide or even a possible anticancer therapeutic. Unraveling the molecular mechanism of rotenone action will help to design tuned derivatives and to understand the still mysterious catalytic mechanism of complex I. Although composed of five fused rings, rotenone is a flexible molecule and populates two conformers, bent and straight. Here, a rotenone derivative locked in the straight form was synthesized and found to inhibit complex I with 600-fold less potency than natural rotenone. Large-scale molecular dynamics and free energy simulations of the pathway for ligand binding to complex I show that rotenone is more stable in the bent conformer, either free in the membrane or bound to the redox active site in the substrate-binding Q-channel. However, the straight conformer is necessary for passage from the membrane through the narrow entrance of the channel. The less potent inhibition of the synthesized derivative is therefore due to its lack of internal flexibility, and interconversion between bent and straight forms is required to enable efficient kinetics and high stability for rotenone binding. The ligand also induces reconfiguration of protein loops and side-chains inside the Q-channel similar to structural changes that occur in the open to closed conformational transition of complex I. Detailed understanding of ligand flexibility and interactions that determine rotenone binding may now be exploited to tune the properties of synthetic derivatives for specific applications.


Assuntos
Complexo I de Transporte de Elétrons , Rotenona , Rotenona/farmacologia , Ligantes , Oxirredução , Simulação de Dinâmica Molecular
3.
Sci Adv ; 7(20)2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33990335

RESUMO

Mitochondrial complex I (NADH:ubiquinone oxidoreductase), a major contributor of free energy for oxidative phosphorylation, is increasingly recognized as a promising drug target for ischemia-reperfusion injury, metabolic disorders, and various cancers. Several pharmacologically relevant but structurally unrelated small molecules have been identified as specific complex I inhibitors, but their modes of action remain unclear. Here, we present a 3.0-Å resolution cryo-electron microscopy structure of mammalian complex I inhibited by a derivative of IACS-010759, which is currently in clinical development against cancers reliant on oxidative phosphorylation, revealing its unique cork-in-bottle mechanism of inhibition. We combine structural and kinetic analyses to deconvolute cross-species differences in inhibition and identify the structural motif of a "chain" of aromatic rings as a characteristic that promotes inhibition. Our findings provide insights into the importance of π-stacking residues for inhibitor binding in the long substrate-binding channel in complex I and a guide for future biorational drug design.

4.
Biochim Biophys Acta Bioenerg ; 1862(3): 148355, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33321110

RESUMO

F1FO-ATP synthase is a crucial metabolic enzyme that uses the proton motive force from respiration to regenerate ATP. For maximum thermodynamic efficiency ATP synthesis should be fully reversible, but the enzyme from Paracoccus denitrificans catalyzes ATP hydrolysis at far lower rates than it catalyzes ATP synthesis, an effect often attributed to its unique ζ subunit. Recently, we showed that deleting ζ increases hydrolysis only marginally, indicating that other common inhibitory mechanisms such as inhibition by the C-terminal domain of the ε subunit (ε-CTD) or Mg-ADP may be more important. Here, we created mutants lacking the ε-CTD, and double mutants lacking both the ε-CTD and ζ subunit. No substantial activation of ATP hydrolysis was observed in any of these strains. Instead, hydrolysis in even the double mutant strains could only be activated by oxyanions, the detergent lauryldimethylamine oxide, or a proton motive force, which are all considered to release Mg-ADP inhibition. Our results establish that P. denitrificans ATP synthase is regulated by a combination of the ε and ζ subunits and Mg-ADP inhibition.


Assuntos
Difosfato de Adenosina/química , Trifosfato de Adenosina/química , Proteínas de Bactérias/química , Paracoccus denitrificans/química , Subunidades Proteicas/química , ATPases Translocadoras de Prótons/química , Difosfato de Adenosina/genética , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/genética , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Hidrólise , Paracoccus denitrificans/genética , Paracoccus denitrificans/metabolismo , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , ATPases Translocadoras de Prótons/genética , ATPases Translocadoras de Prótons/metabolismo
5.
Elife ; 92020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32432547

RESUMO

Disruption of mitochondrial function selectively targets tumour cells that are dependent on oxidative phosphorylation. However, due to their high energy demands, cardiac cells are disproportionately targeted by mitochondrial toxins resulting in a loss of cardiac function. An analysis of the effects of mubritinib on cardiac cells showed that this drug did not inhibit HER2 as reported, but directly inhibits mitochondrial respiratory complex I, reducing cardiac-cell beat rate, with prolonged exposure resulting in cell death. We used a library of chemical variants of mubritinib and showed that modifying the 1H-1,2,3-triazole altered complex I inhibition, identifying the heterocyclic 1,3-nitrogen motif as the toxicophore. The same toxicophore is present in a second anti-cancer therapeutic carboxyamidotriazole (CAI) and we demonstrate that CAI also functions through complex I inhibition, mediated by the toxicophore. Complex I inhibition is directly linked to anti-cancer cell activity, with toxicophore modification ablating the desired effects of these compounds on cancer cell proliferation and apoptosis.


The pharmaceutical industry needs to make safe and effective drugs. At the same time this industry is under pressure to keep the costs of developing these drugs at an acceptable level. Drugs work by interacting with and typically blocking a specific target, such as a protein in a particular type of cell. Sometimes, however, drugs also bind other unexpected targets. These "off-target" effects can be the reason for a drug's toxicity, and it is important ­ both for the benefit of patients and the money that can be saved when developing drugs ­ to identify how drugs cause toxic side effects. The earlier researchers detect off-target effects, the better. Recent data has suggested that an anti-cancer drug called mubritinib has off-target effects on the compartments within cells that provide the cell with most of their energy, the mitochondria. This drug's intended target is a protein called HER2, which is found in large amounts on the surfaces of some breast cancer cells. Yet if mubritinib has this off-target effect on mitochondria, it may be harmful to other cells including heart cells because the heart is an organ that needs a large amount of energy from its mitochondria. Stephenson et al. have now performed experiments to show that mubritinib does not actually interact with HER2 at all, but only targets mitochondria. The effect of mubritinib as an anti-cancer drug is therefore only due to its activity against mitochondria. Digging deeper into the chemistry revealed the small parts of its chemical structure that was responsible for mubritinib's toxicity against heart cells, the so-called toxic substructure. Another anti-cancer drug called carboxyamidotriazole also has the same toxic substructure. Carboxyamidotriazole is supposed to stop cells from taking up calcium ions, but a final set of experiments demonstrated that this drug also only acts by inhibiting mitochondria. Often there is not enough information about many drugs' substructures, meaning off-target effects and toxicities cannot be predicted. The pharmaceutical industry will now be able to benefit from this new knowledge about the toxic substructures within some drugs. This research may also help patients who take mubritinib or carboxyamidotriazole, because their doctors will have to check for side effects on the heart more carefully.


Assuntos
Complexo I de Transporte de Elétrons/metabolismo , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Oxazóis/farmacologia , Triazóis/farmacologia , Trifosfato de Adenosina/metabolismo , Antineoplásicos/química , Antineoplásicos/farmacologia , Morte Celular , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Mitocôndrias/metabolismo , Miócitos Cardíacos , Oxazóis/química , Oxazóis/toxicidade , Fosforilação Oxidativa , Ligação Proteica , Receptor ErbB-2 , Triazóis/química , Triazóis/toxicidade
6.
ACS Synth Biol ; 9(6): 1450-1459, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32383867

RESUMO

Adenosine triphosphate (ATP), the cellular energy currency, is essential for life. The ability to provide a constant supply of ATP is therefore crucial for the construction of artificial cells in synthetic biology. Here, we describe the bottom-up assembly and characterization of a minimal respiratory system that uses NADH as a fuel to produce ATP from ADP and inorganic phosphate, and is thus capable of sustaining both upstream metabolic processes that rely on NAD+, and downstream energy-demanding processes that are powered by ATP hydrolysis. A detergent-mediated approach was used to co-reconstitute respiratory mitochondrial complex I and an F-type ATP synthase into nanosized liposomes. Addition of the alternative oxidase to the resulting proteoliposomes produced a minimal artificial "organelle" that reproduces the energy-converting catalytic reactions of the mitochondrial respiratory chain: NADH oxidation, ubiquinone cycling, oxygen reduction, proton pumping, and ATP synthesis. As a proof-of-principle, we demonstrate that our nanovesicles are capable of using an NAD+-linked substrate to drive cell-free protein expression. Our nanovesicles are both efficient and durable and may be applied to sustain artificial cells in future work.


Assuntos
Trifosfato de Adenosina/metabolismo , Metabolismo Energético , Lipossomos/química , Sistema Livre de Células , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , ATPases Mitocondriais Próton-Translocadoras/genética , ATPases Mitocondriais Próton-Translocadoras/metabolismo , NAD/química , NAD/metabolismo , Oxirredutases/genética , Oxirredutases/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Biologia Sintética/métodos
7.
J Nat Prod ; 83(6): 1829-1845, 2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32459967

RESUMO

Prostate cancer is one of the leading causes of cancer-related death in men. The identification of new therapeutics to selectively target prostate cancer cells is therefore vital. Recently, the rotenoids rotenone (1) and deguelin (2) were reported to selectively kill prostate cancer cells, and the inhibition of mitochondrial complex I was established as essential to their mechanism of action. However, these hydrophobic rotenoids readily cross the blood-brain barrier and induce symptoms characteristic of Parkinson's disease in animals. Since hydroxylated derivatives of 1 and 2 are more hydrophilic and less likely to readily cross the blood-brain barrier, 29 natural and unnatural hydroxylated derivatives of 1 and 2 were synthesized for evaluation. The inhibitory potency (IC50) of each derivative against complex I was measured, and its hydrophobicity (Slog10P) predicted. Amorphigenin (3), dalpanol (4), dihydroamorphigenin (5), and amorphigenol (6) were selected and evaluated in cell-based assays using C4-2 and C4-2B prostate cancer cells alongside control PNT2 prostate cells. These rotenoids inhibit complex I in cells, decrease oxygen consumption, and selectively inhibit the proliferation of prostate cancer cells, leaving control cells unaffected. The greatest selectivity and antiproliferative effects were observed with 3 and 5. The data highlight these molecules as promising therapeutic candidates for further evaluation in prostate cancer models.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Rotenona/análogos & derivados , Rotenona/farmacologia , Desacopladores/farmacologia , Animais , Barreira Hematoencefálica , Bovinos , Divisão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Complexo I de Transporte de Elétrons/efeitos dos fármacos , Humanos , Masculino , Membranas Mitocondriais/efeitos dos fármacos , Estrutura Molecular , Rotenona/química , Desacopladores/química
8.
Nat Med ; 24(7): 1036-1046, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29892070

RESUMO

Metabolic reprograming is an emerging hallmark of tumor biology and an actively pursued opportunity in discovery of oncology drugs. Extensive efforts have focused on therapeutic targeting of glycolysis, whereas drugging mitochondrial oxidative phosphorylation (OXPHOS) has remained largely unexplored, partly owing to an incomplete understanding of tumor contexts in which OXPHOS is essential. Here, we report the discovery of IACS-010759, a clinical-grade small-molecule inhibitor of complex I of the mitochondrial electron transport chain. Treatment with IACS-010759 robustly inhibited proliferation and induced apoptosis in models of brain cancer and acute myeloid leukemia (AML) reliant on OXPHOS, likely owing to a combination of energy depletion and reduced aspartate production that leads to impaired nucleotide biosynthesis. In models of brain cancer and AML, tumor growth was potently inhibited in vivo following IACS-010759 treatment at well-tolerated doses. IACS-010759 is currently being evaluated in phase 1 clinical trials in relapsed/refractory AML and solid tumors.


Assuntos
Neoplasias/patologia , Fosforilação Oxidativa , Animais , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Metabolismo Energético , Glicólise/efeitos dos fármacos , Células HEK293 , Humanos , Ácido Láctico/metabolismo , Leucemia Mieloide Aguda/patologia , Camundongos , Mitocôndrias/metabolismo , Nucleotídeos/biossíntese , Carga Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Open Biol ; 8(1)2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29367351

RESUMO

In oxidative phosphorylation, ATP synthases interconvert two forms of free energy: they are driven by the proton-motive force across an energy-transducing membrane to synthesize ATP and displace the ADP/ATP ratio from equilibrium. For thermodynamically efficient energy conversion they must be reversible catalysts. However, in many species ATP synthases are unidirectional catalysts (their rates of ATP hydrolysis are negligible), and in others mechanisms have evolved to regulate or minimize hydrolysis. Unidirectional catalysis by Paracoccus denitrificans ATP synthase has been attributed to its unique ζ subunit, which is structurally analogous to the mammalian inhibitor protein IF1 Here, we used homologous recombination to delete the ζ subunit from the P. denitrificans genome, and compared ATP synthesis and hydrolysis by the wild-type and knockout enzymes in inverted membrane vesicles and the F1-ATPase subcomplex. ATP synthesis was not affected by loss of the ζ subunit, and the rate of ATP hydrolysis increased by less than twofold, remaining negligible in comparison with the rates of the Escherichia coli and mammalian enzymes. Therefore, deleting the P. denitrificans ζ subunit is not sufficient to activate ATP hydrolysis. We close by considering our conclusions in the light of reversible catalysis and regulation in ATP synthase enzymes.


Assuntos
Proteínas de Bactérias/metabolismo , Paracoccus denitrificans/enzimologia , ATPases Translocadoras de Prótons/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Deleção de Genes , Hidrólise , Paracoccus denitrificans/genética , Domínios Proteicos , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , ATPases Translocadoras de Prótons/química , ATPases Translocadoras de Prótons/genética
10.
Cell Rep ; 21(4): 1036-1047, 2017 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-29069586

RESUMO

Fumarate hydratase (FH) is an enzyme of the tricarboxylic acid (TCA) cycle mutated in hereditary and sporadic cancers. Despite recent advances in understanding its role in tumorigenesis, the effects of FH loss on mitochondrial metabolism are still unclear. Here, we used mouse and human cell lines to assess mitochondrial function of FH-deficient cells. We found that human and mouse FH-deficient cells exhibit decreased respiration, accompanied by a varying degree of dysfunction of respiratory chain (RC) complex I and II. Moreover, we show that fumarate induces succination of key components of the iron-sulfur cluster biogenesis family of proteins, leading to defects in the biogenesis of iron-sulfur clusters that affect complex I function. We also demonstrate that suppression of complex II activity is caused by product inhibition due to fumarate accumulation. Overall, our work provides evidence that the loss of a single TCA cycle enzyme is sufficient to cause combined RC activity dysfunction.


Assuntos
Complexo II de Transporte de Elétrons/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Fumarato Hidratase/metabolismo , Animais , Linhagem Celular Tumoral , Respiração Celular , Fumarato Hidratase/deficiência , Fumarato Hidratase/genética , Fumaratos/metabolismo , Humanos , Proteínas Ferro-Enxofre/metabolismo , Camundongos
11.
J Biol Chem ; 292(12): 4987-4995, 2017 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-28174301

RESUMO

Respiratory complex I couples electron transfer between NADH and ubiquinone to proton translocation across an energy-transducing membrane to support the proton-motive force that drives ATP synthesis. The proton-pumping stoichiometry of complex I (i.e. the number of protons pumped for each two electrons transferred) underpins all mechanistic proposals. However, it remains controversial and has not been determined for any of the bacterial enzymes that are exploited as model systems for the mammalian enzyme. Here, we describe a simple method for determining the proton-pumping stoichiometry of complex I in inverted membrane vesicles under steady-state ADP-phosphorylating conditions. Our method exploits the rate of ATP synthesis, driven by oxidation of NADH or succinate with different sections of the respiratory chain engaged in catalysis as a proxy for the rate of proton translocation and determines the stoichiometry of complex I by reference to the known stoichiometries of complexes III and IV. Using vesicles prepared from mammalian mitochondria (from Bos taurus) and from the bacterium Paracoccus denitrificans, we show that four protons are pumped for every two electrons transferred in both cases. By confirming the four-proton stoichiometry for mammalian complex I and, for the first time, demonstrating the same value for a bacterial complex, we establish the utility of P. denitrificans complex I as a model system for the mammalian enzyme. P. denitrificans is the first system described in which mutagenesis in any complex I core subunit may be combined with quantitative proton-pumping measurements for mechanistic studies.


Assuntos
Trifosfato de Adenosina/metabolismo , Bovinos/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Paracoccus denitrificans/enzimologia , Animais , Transporte de Elétrons , Mitocôndrias/metabolismo , NAD/metabolismo , Oxirredução , Fosforilação Oxidativa , Paracoccus denitrificans/metabolismo , Força Próton-Motriz , Prótons
12.
Biochim Biophys Acta Bioenerg ; 1858(3): 197-207, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27940020

RESUMO

Complex I (NADH:ubiquinone oxidoreductase) is the first enzyme of the electron transport chain in mammalian mitochondria. Extensive proteomic and structural analyses of complex I from Bos taurus heart mitochondria have shown it comprises 45 subunits encoded on both the nuclear and mitochondrial genomes; 44 of them are different and one is present in two copies. The bovine heart enzyme has provided a model for studying the composition of complex I in other mammalian species, including humans, but the possibility of additional subunits or isoforms in other species or tissues has not been explored. Here, we describe characterization of the complexes I purified from five rat tissues and from a rat hepatoma cell line. We identify a~50kDa isoform of subunit NDUFV3, for which the canonical isoform is only ~10kDa in size. We combine LC-MS and MALDI-TOF mass spectrometry data from two different purification methods (chromatography and immuno-purification) with information from blue native PAGE analyses to show the long isoform is present in the mature complex, but at substoichiometric levels. It is also present in complex I in cultured human cells. We describe evidence that the long isoform is more abundant in both the mitochondria and purified complexes from brain (relative to in heart, liver, kidney and skeletal muscle) and more abundant still in complex I in cultured cells. We propose that the long 50kDa isoform competes with its canonical 10kDa counterpart for a common binding site on the flavoprotein domain of complex I.


Assuntos
Complexo I de Transporte de Elétrons/genética , Complexos de Proteínas Captadores de Luz/genética , Isoformas de Proteínas/genética , Sequência de Aminoácidos/genética , Animais , Sítios de Ligação , Bovinos , Complexo I de Transporte de Elétrons/química , Complexo I de Transporte de Elétrons/economia , Complexo I de Transporte de Elétrons/isolamento & purificação , Humanos , Complexos de Proteínas Captadores de Luz/química , Mitocôndrias Cardíacas/química , Mitocôndrias Cardíacas/genética , Isoformas de Proteínas/química , Isoformas de Proteínas/isolamento & purificação , Ratos
13.
BMC Biol ; 14: 65, 2016 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-27506389

RESUMO

BACKGROUND: The biguanides are a family of drugs with diverse clinical applications. Metformin, a widely used anti-hyperglycemic biguanide, suppresses mitochondrial respiration by inhibiting respiratory complex I. Phenformin, a related anti-hyperglycemic biguanide, also inhibits respiration, but proguanil, which is widely used for the prevention of malaria, does not. The molecular structures of phenformin and proguanil are closely related and both inhibit isolated complex I. Proguanil does not inhibit respiration in cells and mitochondria because it is unable to access complex I. The molecular features that determine which biguanides accumulate in mitochondria, enabling them to inhibit complex I in vivo, are not known. RESULTS: Here, a family of seven biguanides are used to reveal the molecular features that determine why phenformin enters mitochondria and inhibits respiration whereas proguanil does not. All seven biguanides inhibit isolated complex I, but only four of them inhibit respiration in cells and mitochondria. Direct conjugation of a phenyl group and bis-substitution of the biguanide moiety prevent uptake into mitochondria, irrespective of the compound hydrophobicity. This high selectivity suggests that biguanide uptake into mitochondria is protein mediated, and is not by passive diffusion. Only those biguanides that enter mitochondria and inhibit complex I activate AMP kinase, strengthening links between complex I and the downstream effects of biguanide treatments. CONCLUSIONS: Biguanides inhibit mitochondrial complex I, but specific molecular features control the uptake of substituted biguanides into mitochondria, so only some biguanides inhibit mitochondrial respiration in vivo. Biguanides with restricted intracellular access may be used to determine physiologically relevant targets of biguanide action, and for the rational design of substituted biguanides for diverse clinical applications.


Assuntos
Adenilato Quinase/metabolismo , Biguanidas/química , Biguanidas/farmacologia , Complexo I de Transporte de Elétrons/metabolismo , Animais , Bovinos , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular/efeitos dos fármacos , Respiração Celular/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Membranas Mitocondriais/efeitos dos fármacos , Membranas Mitocondriais/metabolismo , Consumo de Oxigênio/efeitos dos fármacos , Fenformin/farmacologia , Ratos , Rotenona/farmacologia , Solubilidade
14.
Biochem J ; 462(3): 475-87, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25017630

RESUMO

The biguanide metformin is widely prescribed for Type II diabetes and has anti-neoplastic activity in laboratory models. Despite evidence that inhibition of mitochondrial respiratory complex I by metformin is the primary cause of its cell-lineage-specific actions and therapeutic effects, the molecular interaction(s) between metformin and complex I remain uncharacterized. In the present paper, we describe the effects of five pharmacologically relevant biguanides on oxidative phosphorylation in mammalian mitochondria. We report that biguanides inhibit complex I by inhibiting ubiquinone reduction (but not competitively) and, independently, stimulate reactive oxygen species production by the complex I flavin. Biguanides also inhibit mitochondrial ATP synthase, and two of them inhibit only ATP hydrolysis, not synthesis. Thus we identify biguanides as a new class of complex I and ATP synthase inhibitor. By comparing biguanide effects on isolated complex I and cultured cells, we distinguish three anti-diabetic and potentially anti-neoplastic biguanides (metformin, buformin and phenformin) from two anti-malarial biguanides (cycloguanil and proguanil): the former are accumulated into mammalian mitochondria and affect oxidative phosphorylation, whereas the latter are excluded so act only on the parasite. Our mechanistic and pharmacokinetic insights are relevant to understanding and developing the role of biguanides in new and existing therapeutic applications, including cancer, diabetes and malaria.


Assuntos
Biguanidas/farmacologia , Complexo I de Transporte de Elétrons/efeitos dos fármacos , Metformina/farmacologia , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Hepáticas/efeitos dos fármacos , Fosforilação Oxidativa/efeitos dos fármacos , Animais , Antimaláricos/farmacologia , Antineoplásicos/farmacologia , Biguanidas/uso terapêutico , Bovinos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Complexo I de Transporte de Elétrons/antagonistas & inibidores , Células Hep G2 , Humanos , Metformina/uso terapêutico , ATPases Mitocondriais Próton-Translocadoras/antagonistas & inibidores , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Plasmodium/efeitos dos fármacos , Proguanil/farmacologia , Ratos , Traumatismo por Reperfusão/prevenção & controle , Triazinas/farmacologia
15.
Anal Biochem ; 442(1): 19-23, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23886887

RESUMO

Respiratory complex II (succinate:ubiquinone oxidoreductase) connects the tricarboxylic acid cycle to the electron transport chain in mitochondria and many prokaryotes. Complex II mutations have been linked to neurodegenerative diseases and metabolic defects in cancer. However, there is no convenient stoichiometric assay for the catalytic activity of complex II. Here, we present a simple, quantitative, real-time method to detect the production of fumarate from succinate by complex II that is easy to implement and applicable to the isolated enzyme, membrane preparations, and tissue homogenates. Our assay uses fumarate hydratase to convert fumarate to malate and uses oxaloacetate decarboxylating malic dehydrogenase to convert malate to pyruvate and to convert NADP(+) to NADPH; the NADPH is detected spectrometrically. Simple protocols for the high-yield production of the two enzymes required are described; oxaloacetate decarboxylating malic dehydrogenase is also suitable for accurate determination of the activity of fumarate hydratase. Unlike existing spectrometric assay methods for complex II that rely on artificial electron acceptors (e.g., 2,6-dichlorophenolindophenol), our coupled assay is specific and stoichiometric (1:1 for succinate oxidation to NADPH formation), so it is suitable for comprehensive analyses of the catalysis and inhibition of succinate dehydrogenase activities in samples with both simple and complex compositions.


Assuntos
Succinato Desidrogenase/metabolismo , Animais , Bovinos , Ativação Enzimática , Escherichia coli/enzimologia , Fumarato Hidratase/metabolismo , Fumaratos/química , Fumaratos/metabolismo , Cinética , Malato Desidrogenase/metabolismo , Mitocôndrias Cardíacas/enzimologia , Mitocôndrias Cardíacas/metabolismo , Espectrofotometria , Ácido Succínico/química , Ácido Succínico/metabolismo
16.
Biochemistry ; 52(23): 4048-55, 2013 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-23683271

RESUMO

NADH:ubiquinone oxidoreductase (complex I) is a complicated respiratory enzyme that conserves the energy from NADH oxidation, coupled to ubiquinone reduction, as a proton motive force across the mitochondrial inner membrane. During catalysis, NADH oxidation by a flavin mononucleotide is followed by electron transfer to a chain of iron-sulfur clusters. Alternatively, the flavin may be reoxidized by hydrophilic electron acceptors, by artificial electron acceptors in kinetic studies, or by oxygen and redox-cycling molecules to produce reactive oxygen species. Here, we study two steps in the mechanism of NADH oxidation by complex I. First, molecular fragments of NAD(H), tested as flavin-site inhibitors or substrates, reveal that the adenosine moiety is crucial for binding. Nicotinamide-containing fragments that lack the adenosine do not bind, and ADP-ribose binds more strongly than NAD(+), suggesting that the nicotinamide is detrimental to binding. Second, the primary kinetic isotope effects from deuterated nicotinamide nucleotides confirm that hydride transfer is from the pro-S position and reveal that hydride transfer, along with NAD(+) dissociation, is partially rate-limiting. Thus, the transition state energies are balanced so that no single step in NADH oxidation is completely rate-limiting. Only at very low NADH concentrations does weak NADH binding limit NADH:ubiquinone oxidoreduction, and at the high nucleotide concentrations of the mitochondrial matrix, weak nucleotide binding constants assist product dissociation. Using fast nucleotide reactions and a balance between the nucleotide binding constants and concentrations, complex I combines fast and energy-conserving NADH oxidation with minimal superoxide production from the nucleotide-free site.


Assuntos
Complexo I de Transporte de Elétrons/química , NAD/análogos & derivados , Adenosina/química , Difosfato de Adenosina/química , Adenosina Difosfato Ribose/química , Monofosfato de Adenosina/química , Animais , Ligação Competitiva , Bovinos , Coenzimas/química , Complexo I de Transporte de Elétrons/antagonistas & inibidores , Flavinas/química , Hidrogênio/química , Cinética , Mitocôndrias Cardíacas/enzimologia , Modelos Moleculares , NAD/química , Mononucleotídeo de Nicotinamida/química , Oxirredução , Ligação Proteica
17.
Biochemistry ; 51(1): 149-58, 2012 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-22122402

RESUMO

In mitochondria, complex I (NADH:quinone oxidoreductase) couples electron transfer to proton translocation across an energy-transducing membrane. It contains a flavin mononucleotide to oxidize NADH, and an unusually long series of iron-sulfur (FeS) clusters that transfer the electrons to quinone. Understanding electron transfer in complex I requires spectroscopic and structural data to be combined to reveal the properties of individual clusters and of the ensemble. EPR studies on complex I from Bos taurus have established that five clusters (positions 1, 2, 3, 5, and 7 along the seven-cluster chain extending from the flavin) are (at least partially) reduced by NADH. The other three clusters, positions 4 and 6 plus a cluster on the other side of the flavin, are not observed in EPR spectra from the NADH-reduced enzyme: they may remain oxidized, have unusual or coupled spin states, or their EPR signals may be too fast relaxing. Here, we use Mössbauer spectroscopy on (57)Fe-labeled complex I from the mitochondria of Yarrowia lipolytica to show that the cluster ensemble is only partially reduced in the NADH-reduced enzyme. The three EPR-silent clusters are oxidized, and only the terminal 4Fe cluster (position 7) is fully reduced. Together with the EPR analyses, our results reveal an alternating profile of higher and lower potential clusters between the two active sites in complex I; they are not consistent with the consensus picture of a set of isopotential clusters. The implications for intramolecular electron transfer along the extended chain of cofactors in complex I are discussed.


Assuntos
Complexo I de Transporte de Elétrons/química , Proteínas Ferro-Enxofre/química , Quinona Redutases/química , Espectroscopia de Mossbauer , Domínio Catalítico , Espectroscopia de Ressonância de Spin Eletrônica , Transporte de Elétrons , Complexo I de Transporte de Elétrons/antagonistas & inibidores , Compostos Férricos/química , Compostos Ferrosos/química , Proteínas Fúngicas/química , Proteínas Ferro-Enxofre/metabolismo , Proteínas Mitocondriais/química , Oxirredução , Quinona Redutases/antagonistas & inibidores , Quinona Redutases/metabolismo , Espectroscopia de Mossbauer/métodos , Yarrowia/enzimologia , Yarrowia/metabolismo
18.
FEBS Lett ; 585(14): 2318-22, 2011 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-21664911

RESUMO

The flavin mononucleotide in complex I (NADH:ubiquinone oxidoreductase) catalyzes NADH oxidation, O(2) reduction to superoxide, and the reduction of several 'artificial' electron acceptors. Here, we show that the positively-charged electron acceptors paraquat and hexaammineruthenium(III) react with the nucleotide-bound reduced flavin in complex I, by an unusual ternary mechanism. NADH, ATP, ADP and ADP-ribose stimulate the reactions, indicating that the positively-charged acceptors interact with their negatively-charged phosphates. Our mechanism for paraquat reduction defines a new mechanism for superoxide production by complex I (by redox cycling); in contrast to direct O(2) reduction the rate is stimulated, not inhibited, by high NADH concentrations.


Assuntos
Complexo I de Transporte de Elétrons/metabolismo , Elétrons , Flavinas/química , NAD/química , Difosfato de Adenosina/metabolismo , Adenosina Difosfato Ribose/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Bovinos , Flavinas/metabolismo , Herbicidas/química , Herbicidas/metabolismo , Mitocôndrias Cardíacas/química , Mitocôndrias Cardíacas/metabolismo , NAD/metabolismo , Oxirredução , Paraquat/química , Paraquat/metabolismo , Compostos de Rutênio/química , Compostos de Rutênio/metabolismo
19.
J Biol Chem ; 286(20): 18056-65, 2011 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-21393237

RESUMO

NADH:ubiquinone oxidoreductase (complex I) is a major source of reactive oxygen species in mitochondria and a contributor to cellular oxidative stress. In isolated complex I the reduced flavin is known to react with molecular oxygen to form predominantly superoxide, but studies using intact mitochondria contend that superoxide may result from a semiquinone species that responds to the proton-motive force (Δp) also. Here, we use bovine heart submitochondrial particles to show that a single mechanism describes superoxide production by complex I under all conditions (during both NADH oxidation and reverse electron transfer). NADH-induced superoxide production is inhibited by complex I flavin-site inhibitors but not by inhibitors of ubiquinone reduction, and it is independent of Δp. Reverse electron transfer (RET) through complex I in submitochondrial particles, driven by succinate oxidation and the Δp created by ATP hydrolysis, reduces the flavin, leading to NAD(+) and O(2) reduction. RET-induced superoxide production is inhibited by both flavin-site and ubiquinone-reduction inhibitors. The potential dependence of NADH-induced superoxide production (set by the NAD(+) potential) matches that of RET-induced superoxide production (set by the succinate potential and Δp), and they both match the potential dependence of the flavin. Therefore, both NADH- and RET-induced superoxide are produced by the flavin, according to the same molecular mechanism. The unified mechanism describes how reactive oxygen species production by complex I responds to changes in cellular conditions. It establishes a route to understanding causative connections between the enzyme and its pathological effects and to developing rational strategies for addressing them.


Assuntos
Trifosfato de Adenosina/química , Complexo I de Transporte de Elétrons/química , Mitocôndrias Cardíacas/enzimologia , NADP/química , Superóxidos/química , Trifosfato de Adenosina/metabolismo , Animais , Bovinos , Complexo I de Transporte de Elétrons/metabolismo , NADP/metabolismo , Oxirredução , Superóxidos/metabolismo
20.
Proc Natl Acad Sci U S A ; 107(5): 1930-5, 2010 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-20133838

RESUMO

In oxidative phosphorylation, complex I (NADH:quinone oxidoreductase) couples electron transfer to proton translocation across an energy-transducing membrane. Complex I contains a flavin mononucleotide to oxidize NADH, and an unusually long series of iron-sulfur (FeS) clusters, in several subunits, to transfer the electrons to quinone. Understanding coupled electron transfer in complex I requires a detailed knowledge of the properties of individual clusters and of the cluster ensemble, and so it requires the correlation of spectroscopic and structural data: This has proved a challenging task. EPR studies on complex I from Bos taurus have established that EPR signals N1b, N2 and N3 arise, respectively, from the 2Fe cluster in the 75 kDa subunit, and from 4Fe clusters in the PSST and 51 kDa subunits (positions 2, 7, and 1 along the seven-cluster chain extending from the flavin). The other clusters have either evaded detection or definitive signal assignments have not been established. Here, we combine double electron-electron resonance (DEER) spectroscopy on B. taurus complex I with the structure of the hydrophilic domain of Thermus thermophilus complex I. By considering the magnetic moments of the clusters and the orientation selectivity of the DEER experiment explicitly, signal N4 is assigned to the first 4Fe cluster in the TYKY subunit (position 5), and N5 to the all-cysteine ligated 4Fe cluster in the 75 kDa subunit (position 3). The implications of our assignment for the mechanisms of electron transfer and energy transduction by complex I are discussed.


Assuntos
Complexo I de Transporte de Elétrons/química , Animais , Proteínas de Bactérias/química , Bovinos , Espectroscopia de Ressonância de Spin Eletrônica , Transporte de Elétrons , Transferência de Energia , Modelos Moleculares , Estrutura Molecular , Estrutura Terciária de Proteína , Thermus thermophilus/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA