Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Cells ; 11(21)2022 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-36359838

RESUMO

Organoid models allow for the study of key pathophysiological processes such as cancer biology in vitro. They offer insights into all aspects covering tumor development, progression and response to the treatment of tissue obtained from individual patients. Tumor organoids are therefore not only a better tumor model than classical monolayer cell cultures but can be used as personalized avatars for translational studies. In this review, we discuss recent developments in using organoid models for cancer research and what kinds of advanced models, testing procedures and readouts can be considered.


Assuntos
Neoplasias , Organoides , Humanos , Neoplasias/patologia , Técnicas de Cultura de Células
3.
Cell Genom ; 2(2): 100095, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35187519

RESUMO

Pancreatic cancer (PDAC) is a highly aggressive malignancy for which the identification of novel therapies is urgently needed. Here, we establish a human PDAC organoid biobank from 31 genetically distinct lines, covering a representative range of tumor subtypes, and demonstrate that these reflect the molecular and phenotypic heterogeneity of primary PDAC tissue. We use CRISPR-Cas9 genome editing and drug screening to characterize drug-gene interactions with ARID1A and BRCA2. We find that missense- but not frameshift mutations in the PDAC driver gene ARID1A are associated with increased sensitivity to the kinase inhibitors dasatinib (p < 0.0001) and VE-821 (p < 0.0001). We conduct an automated drug-repurposing screen with 1,172 FDA-approved compounds, identifying 26 compounds that effectively kill PDAC organoids, including 19 chemotherapy drugs currently approved for other cancer types. We validate the activity of these compounds in vitro and in vivo. The in vivo validated hits include emetine and ouabain, compounds which are approved for non-cancer indications and which perturb the ability of PDAC organoids to respond to hypoxia. Our study provides proof-of-concept for advancing precision oncology and identifying candidates for drug repurposing via genome editing and drug screening in tumor organoid biobanks.

4.
Genomics ; 113(2): 515-529, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33418078

RESUMO

Intra-tumor hypoxia is a common feature in many solid cancers. Although transcriptional targets of hypoxia-inducible factors (HIFs) have been well characterized, alternative splicing or processing of pre-mRNA transcripts which occurs during hypoxia and subsequent HIF stabilization is much less understood. Here, we identify many HIF-dependent alternative splicing events after whole transcriptome sequencing in pancreatic cancer cells exposed to hypoxia with and without downregulation of the aryl hydrocarbon receptor nuclear translocator (ARNT), a protein required for HIFs to form a transcriptionally active dimer. We correlate the discovered hypoxia-driven events with available sequencing data from pan-cancer TCGA patient cohorts to select a narrow set of putative biologically relevant splice events for experimental validation. We validate a small set of candidate HIF-dependent alternative splicing events in multiple human gastrointestinal cancer cell lines as well as patient-derived human pancreatic cancer organoids. Lastly, we report the discovery of a HIF-dependent mechanism to produce a hypoxia-dependent, long and coding isoform of the UDP-N-acetylglucosamine transporter SLC35A3.


Assuntos
Processamento Alternativo , Neoplasias Gastrointestinais , Humanos , Translocador Nuclear Receptor Aril Hidrocarboneto/genética , Translocador Nuclear Receptor Aril Hidrocarboneto/metabolismo , Linhagem Celular Tumoral , Neoplasias Gastrointestinais/genética , Neoplasias Gastrointestinais/metabolismo , Fator 1 Induzível por Hipóxia/metabolismo , Transcriptoma , Hipóxia Tumoral
5.
Am J Hematol ; 2018 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-29752735

RESUMO

The complexity of providing adequate care after radiation exposure has drawn increasing attention. While most therapeutic development has focused on improving survival at lethal radiation doses, acute hematopoietic syndrome (AHS) occurs at substantially lower exposures. Thus, it is likely that a large proportion of such a radiation-exposed population will manifest AHS of variable degree and that the medical and socioeconomic costs of AHS will accrue. Here, we examined the potential of rBPI21 (opebacan), used without supportive care, to accelerate hematopoietic recovery after radiation where expected survival was substantial (42-75%) at 30 days). rBPI21 administration was associated with accelerated recovery of hematopoietic precursors and normal marrow cellularity, with increases in megakaryocyte numbers particularly marked. This translated into attaining normal trilineage peripheral blood counts 2-3 weeks earlier than controls. Elevations of hematopoietic growth factors observed in plasma and the marrow microenvironment suggest the mechanism is likely multifactorial and not confined to known endotoxin-neutralizing and cytokine down-modulating activities of rBPI21 . These observations deserve further exploration in radiation models and other settings where inadequate hematopoiesis is a prominent feature. These experiments also model the potential of therapeutics to limit the allocation of scarce resources after catastrophic exposures as an endpoint independent of lethality mitigation. This article is protected by copyright. All rights reserved.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA