Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Histochem Cell Biol ; 161(4): 325-336, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38216701

RESUMO

Su (var) 3-9, enhancer of seste, trithorax (SET)-domain bifurcated histone lysine methyltransferase (SETDB1) plays a crucial role in maintaining intestinal stem cell homeostasis; however, its physiological function in epithelial injury is largely unknown. In this study, we investigated the role of SETDB1 in epithelial regeneration using an intestinal ischemia/reperfusion injury (IRI) mouse model. Jejunum tissues were sampled after 75 min of ischemia followed by 3, 24, and 48 h of reperfusion. Morphological evaluations were performed using light microscopy and electron microscopy, and the involvement of SETDB1 in epithelial remodeling was investigated by immunohistochemistry. Expression of SETDB1 was increased following 24 h of reperfusion and localized in not only the crypt bottom but also in the transit amplifying zone and part of the villi. Changes in cell lineage, repression of cell adhesion molecule expression, and decreased histone H3 methylation status were detected in the crypts at the same time. Electron microscopy also revealed aberrant alignment of crypt nuclei and fusion of adjacent villi. Furthermore, increased SETDB1 expression and epithelial remodeling were confirmed with loss of stem cells, suggesting SETDB1 affects epithelial cell plasticity. In addition, crypt elongation and increased numbers of Ki-67 positive cells indicated active cell proliferation after IRI; however, the expression of PCNA was decreased compared to sham mouse jejunum. These morphological changes and the aberrant expression of proliferation markers were prevented by sinefungin, a histone methyltransferase inhibitor. In summary, SETDB1 plays a crucial role in changes in the epithelial structure after IRI-induced stem cell loss.


Assuntos
Intestinos , Traumatismo por Reperfusão , Camundongos , Animais , Histona-Lisina N-Metiltransferase/metabolismo , Traumatismo por Reperfusão/metabolismo , Células Epiteliais/metabolismo , Isquemia/metabolismo
2.
Intern Med ; 63(7): 903-910, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37558484

RESUMO

Introduction Photodynamic therapy (PDT) is a salvage treatment for local failure after chemoradiotherapy for esophageal cancer. Salvage PDT is the treatment available for vulnerable patients with various comorbidities at risk of salvage esophagectomy. This study assessed the impact of the Charlson comorbidity index (CCI) on the outcomes of salvage PDT using talaporfin sodium (TS) for esophageal cancer. Metohds Consecutive patients with esophageal cancer who underwent salvage TS-PDT from 2016 to 2022 were included in this retrospective study. We investigated the local complete response (L-CR), progression-free survival (PFS) and overall survival (OS) and evaluated the relationship between the CCI and therapeutic efficacy. Results In total, 25 patients were enrolled in this study. Overall, 12 patients (48%) achieved an L-CR, and the 2-year PFS and OS rates were 24.9% and 59.4%, respectively. In a multivariate analysis, a CCI ≥1 (p=0.041) and deeper invasion (p=0.048) were found to be significant independent risk factors for not achieving an L-CR. To evaluate the efficacy associated with comorbidities, we divided the patients into the CCI=0 group (n=11) and the CCI ≥1 group (n=14). The rate of an L-CR (p=0.035) and the 2-year PFS (p=0.029) and OS (p=0.018) rates in the CCI ≥1 group were significantly lower than those in the CCI=0 group. Conclusion This study found that the CCI was negatively associated with the efficacy of salvage TS-PDT for esophageal cancer.


Assuntos
Neoplasias Esofágicas , Fotoquimioterapia , Porfirinas , Humanos , Fármacos Fotossensibilizantes/uso terapêutico , Fotoquimioterapia/métodos , Terapia de Salvação/métodos , Estudos Retrospectivos , Neoplasias Esofágicas/tratamento farmacológico , Comorbidade , Resultado do Tratamento
3.
Histochem Cell Biol ; 161(1): 81-93, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37821557

RESUMO

Estrogen and its receptors are involved in the pathogenesis of gastrointestinal diseases such as colitis. However, the role of the membrane estrogen receptor G-protein-coupled receptor 30 (GPR30) in colitis is poorly understood. We therefore investigated the effect of estrogen in dextran sulfate sodium (DSS)-induced colitis. Male C57BL/6 mice were administered 1.5% DSS for 5 days and treated with 17ß-estradiol (E2), GPR30 agonist (G1), or GPR30 antagonist (G15) for 8 days. Inflammation grade was evaluated by disease activity index (DAI) and histomorphological score. Colon tissues were immunohistochemically analyzed and revealed high expression of membrane GPR30, histone 3 lysine 36 dimethylation, and lysine 79 trimethylation in normal mouse colon epithelial cells but significantly decreased expression in DSS-treated mice, whereas the expression was partially preserved after treatment with E2 or G1. Colon shortening and DAI were significantly lower in E2- and G1-treated mice compared to DSS-treated mice. Caudal type homeobox 2 (CDX2) expression and cell proliferation differed in normal colon epithelial cells but overlapped in those of DSS-treated mice. Administration of E2 and G1 reduced CDX2 expression and cell proliferation. Altered expression of claudin-2 and occludin were observed in the colonic epithelium of DSS-treated mice, and these changes were significantly lower in the colon of E2- and G1-treated mice. These results indicate that estrogen regulates histone modification, cell proliferation, and CDX2 expression through GPR30, which affects intestinal epithelial barrier function. We conclude that estrogen protects against intestinal epithelial damage through GPR30 by enhancing intestinal epithelial barrier function in DSS-induced colitis in mice.


Assuntos
Colite , Lisina , Animais , Masculino , Camundongos , Colite/induzido quimicamente , Colite/metabolismo , Colite/patologia , Colo/patologia , Sulfato de Dextrana/efeitos adversos , Sulfato de Dextrana/metabolismo , Modelos Animais de Doenças , Estrogênios/farmacologia , Estrogênios/metabolismo , Mucosa Intestinal/metabolismo , Lisina/metabolismo , Camundongos Endogâmicos C57BL , Receptores de Estrogênio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
4.
Cancer Immunol Res ; 11(9): 1266-1279, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37432112

RESUMO

Clec4A4 is a C-type lectin receptor (CLR) exclusively expressed on murine conventional dendritic cells (cDC) to regulate their activation status. However, the functional role of murine Clec4A4 (mClec4A4) in antitumor immunity remains unclear. Here, we show that mClec4A4 serves as a negative immune checkpoint regulator to impair antitumor immune responses. Deficiency of mClec4A4 lead to a reduction in tumor development, accompanied by enhanced antitumor immune responses and amelioration of the immunosuppressive tumor microenvironment (TME) mediated through the enforced activation of cDCs in tumor-bearing mice. Furthermore, antagonistic mAb to human CLEC4A (hCLEC4A), which is the functional orthologue of mClec4A4, exerted protection against established tumors without any apparent signs of immune-related adverse events in hCLEC4A-transgenic mice. Thus, our findings highlight the critical role of mClec4A4 expressed on cDCs as a negative immune checkpoint molecule in the control of tumor progression and provide support for hCLEC4A as a potential target for immune checkpoint blockade in tumor immunotherapy.

5.
Cell Rep ; 42(5): 112431, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37099426

RESUMO

While dysbiosis in the gut is implicated in the impaired induction of oral tolerance generated in mesenteric lymph nodes (MesLNs), how dysbiosis affects this process remains unclear. Here, we describe that antibiotic-driven gut dysbiosis causes the dysfunction of CD11c+CD103+ conventional dendritic cells (cDCs) in MesLNs, preventing the establishment of oral tolerance. Deficiency of CD11c+CD103+ cDCs abrogates the generation of regulatory T cells in MesLNs to establish oral tolerance. Antibiotic treatment triggers the intestinal dysbiosis linked to the impaired generation of colony-stimulating factor 2 (Csf2)-producing group 3 innate lymphoid cells (ILC3s) for regulating the tolerogenesis of CD11c+CD103+ cDCs and the reduced expression of tumor necrosis factor (TNF)-like ligand 1A (TL1A) on CD11c+CD103+ cDCs for generating Csf2-producing ILC3s. Thus, antibiotic-driven intestinal dysbiosis leads to the breakdown of crosstalk between CD11c+CD103+ cDCs and ILC3s for maintaining the tolerogenesis of CD11c+CD103+ cDCs in MesLNs, responsible for the failed establishment of oral tolerance.


Assuntos
Disbiose , Imunidade Inata , Humanos , Disbiose/metabolismo , Linfócitos/metabolismo , Cadeias alfa de Integrinas/metabolismo , Células Dendríticas/metabolismo , Antibacterianos/metabolismo , Mucosa Intestinal/metabolismo
6.
J Oncol ; 2023: 1440257, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36824665

RESUMO

Background: Oxaliplatin (OX)-based chemotherapy induces sinusoidal obstruction syndrome (SOS) in the nontumorous liver parenchyma, which can increase the risk of liver resection due to colorectal liver metastasis (CRLM). The extracellular volume (ECV) calculated from contrast-enhanced computed tomography (CT) has been reported to reflect the morphological change of hepatic fibrosis. The present retrospective study aimed to evaluate the ECV fraction as a predictive factor for OX-induced SOS. Methods: Our study included 26 patients who underwent liver resection for CRLM after OX-based chemotherapy with a preoperative dynamic CT of appropriate quality. We investigated the relationship between the pathological SOS grade and the ECV fraction. Results: Overall, 26 specimens from the patients were graded with the SOS classification of Rubbia-Brandt et al. as follows: grade 0, n = 17 (65.4%); grade 1, n = 4 (15.4%); and grade 2, n = 5 (19.2%). No specimens showed grade 3 SOS. In a univariate analysis, the ECV fraction in grade 0 SOS was significantly lower than that in grade 1 + 2 SOS (26.3 ± 3.4% vs. 30.6 ± 7.0%; P = 0.025). The cutoff value and AUC value of the ECV fraction to distinguish between grades 0 and 1 + 2 were 27.5% and 0.771, respectively. Conclusions: Measurement of the ECV fraction was found to be a potential noninvasive diagnostic method for determining early-stage histopathological sinusoidal injury induced by OX-based chemotherapy.

7.
Acta Histochem Cytochem ; 55(5): 119-128, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36405552

RESUMO

In situ hybridization (ISH) is a powerful method for detecting specific RNAs at the cellular level. Although conventional ISH using hapten-labeled probes are useful for detecting multiple RNAs, the detection procedures are still complex and required longer time. Therefore, we introduced a new application of fluorescence resonance energy transfer (FRET)-based molecular beacon (MB) probes for ISH. MCF-7 cells and C57BL/6J mouse uterus were used for ISH. MB probes for ERα mRNA and 28S rRNA were labeled with Cy3/BHQ-2 and 6-FAM/DABCYL, and conventional probes were labeled with digoxigenin. Fluorescence measurements revealed that of more-rapid hybridization kinetics compared to conventional probes. In MCF-7 cells, 28S rRNA was detected in nucleolus and cytoplasm of all cells, whereas ERα mRNA was detected in some nucleolus. In the uterus, 28S rRNA was clearly detected using complementary MB probe, but there were no signals in control slides. Moreover, 28S rRNA was detected in all cells, whereas ERα mRNA was detected mainly in the epithelium. Fluorescence intensity of 28S rRNA was decreased significantly in 1 or 2 base-mismatched sequences, that indicates highly specific detection of target RNAs. In conclusion, the FRET-based MB probes are very useful for ISH, providing rapid hybridization, high sensitivity and specificity.

8.
Chem Commun (Camb) ; 58(89): 12479-12482, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36278312

RESUMO

In the present study, we synthesized a novel near-infrared turn-on BODIPY probe and a new norbornene-modified glucosamine derivative. The probe exhibits a significant NIR fluorescence emission with a turn-on response and can perform tumour-specific imaging in tumour-bearing mice. The non-natural glucosamine provides metabolic glycoengineering labelling. It can be expressed on cells as chemical tags and further reacted with fluorescence dyes for cell labelling. The combination of the two derivatives enables quick and sensitive cell imaging in vitro and in vivo using the iEDDA reaction.


Assuntos
Química Click , Neoplasias , Camundongos , Animais , Glucosamina , Imagem Óptica , Corantes Fluorescentes , Norbornanos
9.
Acta Histochem Cytochem ; 55(3): 99-110, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35821749

RESUMO

Epithelial protein lost in neoplasm (EPLIN) is an actin-associated cytoskeletal protein that plays an important role in epithelial cell adhesion. EPLIN has two isoforms: EPLINα and EPLINß. In this study, we investigated the role of EPLINß in osteoblasts using EPLINß-deficient (EPLINßGT/GT ) mice. The skeletal phenotype of EPLINßGT/GT mice is indistinguishable from the wildtype (WT), but bone properties and strength were significantly decreased compared with WT littermates. Histomorphological analysis revealed altered organization of bone spicules and osteoblast cell arrangement, and decreased alkaline phosphatase activity in EPLINßGT/GT mouse bones. Transmission electron microscopy revealed wider intercellular spaces between osteoblasts in EPLINßGT/GT mice, suggesting aberrant cell adhesion. In EPLINßGT/GT osteoblasts, α- and ß-catenins and F-actin were observed at the cell membrane, but OB-cadherin was localized at the perinuclear region, indicating that cadherin-catenin complexes were not formed. EPLINß knockdown in MC3T3-e1 osteoblast cells showed similar results as in calvaria cell cultures. Bone formation markers, such as RUNX2, Osterix, ALP, and Col1a1 mRNA were reduced in EPLINß knockdown cells, suggesting an important role for EPLINß in osteoblast formation. In conclusion, we propose that EPLINß is involved in the assembly of cadherin-catenin complexes in osteoblasts and affects bone formation.

10.
Histochem Cell Biol ; 157(3): 359-369, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35024954

RESUMO

High-mobility group box 2 (HMGB2) is a chromatin-associated protein that is an important regulator of gene transcription, recombination, and repair processes. The functional importance of HMGB2 has been reported in various organs, including the testis, heart, and cartilage. However, its role in the ovary is largely unknown. In this study, ovary tissues from wild-type (WT) and HMGB2-knock-out (KO) mice were examined by histopathological staining and immunohistochemistry. The ovary size and weight were significantly lower in HMGB2-KO mice than in age-matched WT littermates. Histopathological analysis revealed ovarian atrophy and progressive fibrosis in 10-month-old HMGB2-KO mouse ovaries. Compared to age-matched WT mice, the numbers of oocytes and developing follicles were significantly decreased at 2 months of age and were completely depleted at 10 months of age in HMGB2-KO mice. Immunohistochemistry revealed the expression of HMGB2 in the granulosa cells of developing follicles, oocytes, some corpora lutea, and stromal cells. Importantly, HMGB2-positive cells were co-localized with estrogen receptor beta (ERß), but not ERα. Estrogen response element-binding activity was demonstrated by southwestern histochemistry, and it was decreased in HMGB2-KO mouse ovaries. Cell proliferation activity was also decreased in HMGB2-KO mouse ovaries in parallel with the decreased folliculogenesis. These results indicated that the depletion of HMGB2 induced ovarian atrophy that was characterized by a decreased ovarian size and weight, progressive fibrosis, as well as decreased oocytes and folliculogenesis. In conclusion, we demonstrated the crucial role of HMGB2 in mouse ovarian folliculogenesis through ERß expression.


Assuntos
Receptor beta de Estrogênio , Proteína HMGB2 , Animais , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/análise , Receptor beta de Estrogênio/genética , Receptor beta de Estrogênio/metabolismo , Feminino , Células da Granulosa , Proteína HMGB2/análise , Proteína HMGB2/genética , Proteína HMGB2/metabolismo , Camundongos , Camundongos Knockout , Ovário/metabolismo
11.
Biol Reprod ; 105(6): 1510-1520, 2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-34719720

RESUMO

High-mobility group box 2, a chromatin-associated protein that interacts with deoxyribonucleic acid, is implicated in multiple biological processes, including gene transcription, replication, and repair. High-mobility group box 2 is expressed in several tissues, including the testis; however, its functional role is largely unknown. Here, we elucidated the role of high-mobility group box 2 in spermatogenesis. Paraffin-embedded testicular tissues were obtained from 8-week-old and 1-year-old wild-type and knock-out mice. Testis weight and number of seminiferous tubules were decreased, whereas atrophic tubules were increased in high-mobility group box 2-depleted mice. Immunohistochemistry revealed that atrophic tubules contained Sertoli cells, but not germ cells. Moreover, decreased cell proliferation and increased apoptosis were demonstrated in high-mobility group box 2-depleted mouse testis. To elucidate the cause of tubule atrophy, we examined the expression of androgen and estrogen receptors, and the results indicated aberrant expression of androgen receptor and estrogen receptor alpha in Sertoli and Leydig cells. Southwestern histochemistry detected decreased estrogen response element-binding sites in high-mobility group box 2-depleted mouse testis. High-mobility group box 1, which has highly similar structure and function as high-mobility group box 2, was examined by immunohistochemistry and western blotting, which indicated increased expression in testis. These findings indicate a compensatory increase in high-mobility group box 1 expression in high-mobility group box 2 knock-out mouse testis. In summary, depletion of high-mobility group box 2 induced aberrant expression of androgen receptor and estrogen receptor alpha, leading to decreased germ cell proliferation and increased apoptosis which resulted in focal seminiferous tubule atrophy.


Assuntos
Expressão Gênica , Receptores Androgênicos/genética , Receptores de Estrogênio/genética , Túbulos Seminíferos/patologia , Doenças Testiculares/genética , Animais , Masculino , Camundongos , Receptores Androgênicos/metabolismo , Receptores de Estrogênio/metabolismo
12.
Acta Histochem Cytochem ; 53(4): 61-72, 2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32873990

RESUMO

Photodynamic therapy (PDT) uses photosensitizer activation by light of a specific wavelength, and is a promising treatment for various cancers; however, the detailed mechanism of PDT remains unclear. Therefore, we investigated the anticancer effect of PDT using a novel phosphorus tetraphenylporphyrin (Ptpp) in combination with light emitting diodes (Ptpp-PDT) in the NOZ human biliary cancer cell line. Cell viability and apoptosis were examined by MTT assay, flow cytometry and TUNEL assay for 24 hr after Ptpp-PDT. MitoTracker and JC-1 were used as markers of mitochondrial localization and membrane potential. The levels of mitochondrial oxidative phosphorylation (OXPHOS) complexes, Bcl-2 family proteins, cytochrome c and cleaved caspase-3 were examined by western blotting and immunohistochemistry. The results revealed that Ptpp localized to mitochondria, and that Ptpp-PDT efficiently decreased cell viability in a dose- and time-dependent manner. JC-1 and OXPHOS complexes decreased, but apoptotic cells increased from 6 to 24 hr after Ptpp-PDT. A decrease in Bcl-xL and increases in Bax, cytochrome c and cleaved caspase-3 were also found from 6 to 24 hr after Ptpp-PDT. Based on these results, we conclude that Ptpp-PDT induces anticancer effects via the mitochondrial apoptotic pathway by altering the Bax/Bcl-xL ratio, and could be an effective treatment for human biliary cancer.

13.
Histochem Cell Biol ; 153(4): 287-288, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32206867

RESUMO

The figure shown below is the correct version. We apologize for the mistake.

14.
Sci Rep ; 9(1): 18130, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31792295

RESUMO

In this study, to investigate the secondary function of Rpl10a in zebrafish development, morpholino antisense oligonucleotides (MOs) were used to knock down the zebrafish ribosomal protein L10a (rpl10a). At 25 hpf (hours post-fertilization), embryos injected with the rpl10a MO showed an abnormal morphology, including short bodies, curved tails, and small yolk sac extensions. We observed pigment reductions, edema, larger yolk sacs, smaller eyes and smaller yolk sac extensions at 50 hpf. In addition, reductions in the expression of primordial germ cell (PGC) marker genes (nanos1 and vasa) were observed in rpl10a knockdown embryos. A rescue experiment using a rpl10a mRNA co-injection showed the recovery of the morphology and red blood cell production similar to wild-type. Moreover, the CRISPR-Cas9 system was used to edit the sequence of rpl10a exon 5, resulting in a homozygous 5-bp deletion in the zebrafish genome. The mutant embryos displayed a morphology similar to that of the knockdown animals. Furthermore, the loss of rpl10a function led to reduced expression of gata1, hbae3, and hbbe1 (erythroid synthesis) and increased tp53 expression. Overall, the results suggested that Rpl10a deficiency caused delays in embryonic development, as well as apoptosis and anemia, in zebrafish.


Assuntos
Embrião não Mamífero/anormalidades , Regulação da Expressão Gênica no Desenvolvimento , Hemoglobinas/genética , Proteínas de Ligação a RNA/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Animais , Sistemas CRISPR-Cas , RNA Helicases DEAD-box/genética , Eritropoese/genética , Fator de Transcrição GATA1/genética , Técnicas de Silenciamento de Genes , Técnicas de Inativação de Genes , Células Germinativas/fisiologia , Oligonucleotídeos Antissenso , Proteínas de Ligação a RNA/metabolismo , Proteína Supressora de Tumor p53/genética , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/metabolismo
15.
Acta Histochem Cytochem ; 52(4): 67-75, 2019 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-31592200

RESUMO

Fatty liver is common in men and post-menopausal women, suggesting that estrogen may be involved in liver lipid metabolism. The aim of this study is to be clear the role of estrogen and estrogen receptor alpha (ERα) in fat accumulation during liver regeneration using the 70% partial hepatectomy (PHX) model in male, female, ovariectomized (OVX) and E2-treated OVX (OVX-E2) rats. Liver tissues were sampled at 0-48 hr after PHX and fat accumulation, fatty acid translocase (FAT/CD36), sterol regulatory element-binding protein (SREBP1c), peroxisome proliferator-activated receptor α (PPARα), proliferative cell nuclear antigen (PCNA) and ERα were examined by Oil Red O, qRT-PCR and immunohistochemistry, respectively. Hepatic fat accumulation was abundant in female and OVX-E2 compared to male and OVX rats. FAT/CD36 expression was observed in female, OVX and OVX-E2 at 0-12 hr after PHX, but not in male rats. At 0 hr, SREBP1c and PPARα were elevated in female and male rats, respectively, but were decreased after PHX in all rats. The PCNA labeling index reached a maximum at 36 hr and 48 hr in OVX-E2 and OVX rats, respectively. ERα expression in OVX-E2 was higher than OVX at 0-36 hr after PHX. In conclusion, these results indicated that estrogen and ERα might play an important role in fat accumulation related to FAT/CD36 during early phase of rat liver regeneration.

16.
Acta Histochem Cytochem ; 52(1): 1-8, 2019 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-30923410

RESUMO

Hepatoid adenocarcinoma (HAC) is a rare and aggressive gastrointestinal tract cancer that is characterized by hepatic differentiation and production of alpha-fetoprotein (AFP). Cisplatin is mainly used to treat HAC, but the efficacy is poor. Recently, the histone deacetylase inhibitor, suberoylanilide hydroxamic acid (SAHA), was approved as an anticancer agent. In this study, we investigated the anticancer effect of SAHA in combination with cisplatin in VAT-39 cells, a newly established HAC cell line. Cell viability and apoptosis were examined by MTT assay, flow cytometry and TUNEL assay. Expression of H3S10, cleaved caspase-3, Bax, and Bcl-2 were evaluated by immunohistochemistry and western blotting. AFP levels were examined in VAT-39 cells and culture medium. Combined treatment with cisplatin and SAHA efficiently inhibited cell proliferation and decreased cell viability. Apoptotic cells, but not necrotic cells, were significantly increased following the combined treatment, and an increase in the Bax/Bcl-2 ratio indicated that the combination of cisplatin and SAHA induced apoptosis through the mitochondrial pathway. VAT-39 cells treated with cisplatin and SAHA also partially lost their main characteristic of AFP production. We conclude that cisplatin and SAHA have a synergistic anticancer effect of inducing apoptosis, and that this combination treatment may be effective for HAC.

17.
Sci Rep ; 8(1): 9601, 2018 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-29942000

RESUMO

Although various surgical procedures have been developed for chronic rotator cuff tear repair, the re-tear rate remains high with severe fat infiltration. However, little is known about the molecular regulation of this process. Mesenchymal stem cells (MSCs) in the intra-muscular space are origin of ectopic fat cells in skeletal muscle. We have previously shown that high-mobility group box 2 (HMGB2), which is a nuclear protein commonly associated with mesenchymal differentiation, is involved in the early articular cartilage degeneration. In this study, we addressed the role of HMGB2 in adipogenesis of MSCs and fat infiltration into skeletal muscles. HMGB2 was highly expressed in undifferentiated MSCs and co-localized with platelet-derived growth factor receptor α (PDGFRA) known as an MSC-specific marker, while their expressions were decreased during adipocytic differentiation. Under the deficiency of HMGB2, the expressions of adipogenesis-related molecules were reduced, and adipogenic differentiation is substantially impaired in MSCs. Moreover, HMGB2+ cells were generated in the muscle belly of rat supraspinatus muscles after rotator cuff transection, and some of these cells expressed PDGFRA in intra-muscular spaces. Thus, our findings suggest that the enhance expression of HMGB2 induces the adipogenesis of MSCs and the fat infiltration into skeletal muscles through the cascade of HMGB2-PDGFRA.


Assuntos
Adipogenia , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Proteína HMGB2/metabolismo , Músculo Esquelético/citologia , Animais , Diferenciação Celular , Regulação da Expressão Gênica , Proteína HMGB2/genética , Masculino , Células-Tronco Mesenquimais/citologia , Camundongos , Ratos , Receptores do Fator de Crescimento Derivado de Plaquetas/metabolismo
18.
Acta Histochem Cytochem ; 51(1): 21-31, 2018 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-29622847

RESUMO

Estrogen affects mitochondrial function in various tissues, but the precise mechanism remains unclear. We, therefore investigated the effect on estrogen-regulated mitochondrial morphology by dynamin-related protein 1 (Drp1) and its Ser616-phosphorylated derivative (pDrp1Ser616) are involved in mitochondrial fission. MCF7 human breast cancer cells were treated with 17ß-estradiol (E2), an estrogen receptor (ER) α and ß antagonist (ICI 182, 780), an ERα antagonist (MPP), and an ERß antagonist (PHTPP) for 24 hr. The expression of Drp1 and pDrp1Ser616 was analyzed by western blotting and immunohistochemistry. Mitochondrial morphology was analyzed by transmission electron microscopy (TEM). In control cells, Drp1 was detected in the cytoplasm of all cells while pDrp1 was observed in the cytoplasm of 3.4 ± 1.0% of the total population. After E2 treatment, pDrp1Ser616-positive cells comprised 30.6 ± 5.6% of the total population, 10.5 ± 1.7% after E2 + ICI treatment, 12.4 ± 4.2% after E2 + MPP treatment, and 24.0 ± 2.2% after E2 + PHTPP treatment. In ERα knockdown MCF7 cells, pDrp1 expression was decreased after E2 treatment compared to E2-treated wild type cells. Tubular pattern mitochondria were found in the control cells but the number of short and small pattern mitochondria (< 0.5 µm2) was significantly increased after E2 treatment (as observed by TEM). We, therefore concluded that the phosphorylation of Drp1 is important for E2-dependent mitochondrial morphological changes through ERα.

19.
Acta Histochem Cytochem ; 51(1): 33-40, 2018 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-29622848

RESUMO

Inflammatory bowel disease (IBD) is an inflammatory disorder of the gastrointestinal tract that is caused by multiple factors, including dysfunction of the immune system and genetic and epigenetic alterations. Aberrant epigenetic regulation, especially histone acetylation, was found in biopsies from IBD patients and mouse models of colitis, suggesting that an epigenetic treatment approach may be useful for IBD therapy. Therefore, we investigated the effects of the histone deacetylase (HDAC) inhibitor, suberoylanilide hydroxamic acid (SAHA), in a mouse model of dextran sulfate sodium (DSS)-induced colitis. C57BL/6 mice were treated with 1.5% DSS for 5 days and/or SAHA (25 mg/kg BW/day) for 26 days. Levels of mRNA for the pro-inflammatory cytokines, interleukin (IL)-6 and tumor necrosis factor (TNF)-α, and the chemokines, Ccl2, were examined by qRT-PCR. CD11b, a marker of dendritic cells, macrophages, and monocytes, as well as Ccl2 expression, were examined by immunohistochemistry. IL-6, TNF-α, and Ccl2 gene expression peaked on day 5 in DSS-treated mouse colon, whereas SAHA treatment significantly decreased pro-inflammatory gene expression. Ccl2 protein expression resembled Ccl2 gene expression results. Moreover, localization of CD11b showed that migratory inflammatory cells were dramatically decreased by SAHA treatment compared to DSS-treated mouse colon. Thus, we conclude that the HDAC inhibitor, SAHA, attenuates inflammatory changes in DSS-induced colitis by suppressing local secretion of pro-inflammatory cytokines and chemokines and also by suppressing mobilization and accumulation of inflammatory cells.

20.
Bioorg Med Chem ; 25(24): 6536-6541, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29108834

RESUMO

A series of phosphorus porphyrin complexes ([(RO)2P(tpp)]Cl, tpp = tetraphenylporphyrinato group, R = -(CH2CH2O)m(CH2)nH; 1a: m = 2, n = 2; 1b: m = 2, n = 4; 1c: m = 2, n = 6; 1d: m = 3, n = 6) were used for the photodynamic therapy (PDT) of human biliary cancer cell line (NOZ) when exposed to the irradiation of light emitting diodes (LEDs). A Dulbecco's modified Eagle's medium (DMEM) containing NOZ cells (2000 cell well-1) and 1 (0-100 nM) was introduced into a 96-well microplate and incubated for 24 h to accumulate 1 into the NOZ cells and to multiply the NOZ cells until the cell number reached 104 cells well-1. After replacing the DMEM medium containing 1 with a fresh DMEM medium without 1, the plates were irradiated for 30 min at 610 nm. After incubation was performed for 24 h in dark conditions, the cell viability of the NOZ cells was determined using the MTT assay. The half maximum inhibitory concentrations 50 (IC50) of 1a-1d were found to be in the range of 33.7-58.7 nM for NOZ. These IC50 values for the NOZ were one hundredth the IC50 value (7.57 µM) for mono-l-aspartyl chlorin e6 (laserphyrin®). Thus, it was found that the PDT activity of 1a-1d was much higher than the mono-l-aspartyl chlorin e6. Similarly, IC50 vales of 1a-1d for HeLa cells were found to be 27.8-52.5 nM. This showed that 1a-1d had high photodynamic activity in cancer cells. At the same time, it was speculated that an LED is a useful light source for deactivating the cancer cells because it can excite the sensitizers with peak width in their absorption spectra using the light of the specified wave length with band width of 10-20 nm; LEDs provide a homogeneous light distribution for the target cells.


Assuntos
Luz , Fotoquimioterapia , Porfirinas/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Células HeLa , Humanos , Estrutura Molecular , Porfirinas/síntese química , Porfirinas/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA