Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 17(7): e0271112, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35830431

RESUMO

The outbreak of the coronavirus disease 2019 caused by the severe acute respiratory syndrome coronavirus 2 triggered a global pandemic where control is needed through therapeutic and preventive interventions. This study aims to identify natural compounds that could affect the fusion between the viral membrane (receptor-binding domain of the severe acute respiratory syndrome coronavirus 2 spike protein) and the human cell receptor angiotensin-converting enzyme 2. Accordingly, we performed the enzyme-linked immunosorbent assay-based screening of 10 phytochemicals that already showed numerous positive effects on human health in several epidemiological studies and clinical trials. Among these phytochemicals, epigallocatechin gallate, a polyphenol and a major component of green tea, could effectively inhibit the interaction between the receptor-binding domain of the severe acute respiratory syndrome coronavirus 2 spike protein and the human cell receptor angiotensin-converting enzyme 2. Alternately, in silico molecular docking studies of epigallocatechin gallate and angiotensin-converting enzyme 2 indicated a binding score of -7.8 kcal/mol and identified a hydrogen bond between R393 and angiotensin-converting enzyme 2, which is considered as a key interacting residue involved in binding with the severe acute respiratory syndrome coronavirus 2 spike protein receptor-binding domain, suggesting the possible blocking of interaction between receptor-binding domain and angiotensin-converting enzyme 2. Furthermore, epigallocatechin gallate could attenuate severe acute respiratory syndrome coronavirus 2 infection and replication in Caco-2 cells. These results shed insight into identification and validation of severe acute respiratory syndrome coronavirus 2 entry inhibitors.


Assuntos
Enzima de Conversão de Angiotensina 2 , Tratamento Farmacológico da COVID-19 , COVID-19 , Catequina , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/metabolismo , COVID-19/virologia , Células CACO-2 , Catequina/análogos & derivados , Catequina/farmacologia , Humanos , Simulação de Acoplamento Molecular , Peptidil Dipeptidase A/metabolismo , Ligação Proteica , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo
2.
J Virol ; 94(23)2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-32938759

RESUMO

Some plus-stranded RNA viruses generate double-membrane vesicles (DMVs), one type of the membrane replication factories, as replication sites. Little is known about the lipid components involved in the biogenesis of these vesicles. Sphingomyelin (SM) is required for hepatitis C virus (HCV) replication, but the mechanism of SM involvement remains poorly understood. SM biosynthesis starts in the endoplasmic reticulum (ER) and gives rise to ceramide, which is transported from the ER to the Golgi by the action of ceramide transfer protein (CERT), where it can be converted to SM. In this study, inhibition of SM biosynthesis, either by using small-molecule inhibitors or by knockout (KO) of CERT, suppressed HCV replication in a genotype-independent manner. This reduction in HCV replication was rescued by exogenous SM or ectopic expression of the CERT protein, but not by ectopic expression of nonfunctional CERT mutants. Observing low numbers of DMVs in stable replicon cells treated with a SM biosynthesis inhibitor or in CERT-KO cells transfected with either HCV replicon or with constructs that drive HCV protein production in a replication-independent system indicated the significant importance of SM to DMVs. The degradation of SM of the in vitro-isolated DMVs affected their morphology and increased the vulnerability of HCV RNA and proteins to RNase and protease treatment, respectively. Poliovirus, known to induce DMVs, showed decreased replication in CERT-KO cells, while dengue virus, known to induce invaginated vesicles, did not. In conclusion, these findings indicated that SM is an essential constituent of DMVs generated by some plus-stranded RNA viruses.IMPORTANCE Previous reports assumed that sphingomyelin (SM) is essential for HCV replication, but the mechanism was unclear. In this study, we showed for the first time that SM and ceramide transfer protein (CERT), which is in the SM biosynthesis pathway, are essential for the biosynthesis of double-membrane vesicles (DMVs), the sites of viral replication. Low numbers of DMVs were observed in CERT-KO cells transfected with replicon RNA or with constructs that drive HCV protein production in a replication-independent system. HCV replication was rescued by ectopic expression of the CERT protein, but not by CERT mutants, that abolishes the binding of CERT to vesicle-associated membrane protein-associated protein (VAP) or phosphatidylinositol 4-phosphate (PI4P), indicating new roles for VAP and PI4P in HCV replication. The biosynthesis of DMVs has great importance to replication by a variety of plus-stranded RNA viruses. Understanding of this process is expected to facilitate the development of diagnosis and antivirus.


Assuntos
Proteínas de Transporte/metabolismo , Hepacivirus/metabolismo , Esfingomielinas/metabolismo , Replicação Viral/fisiologia , Transporte Biológico , Proteínas de Transporte/genética , Linhagem Celular , Ceramidas , Retículo Endoplasmático/metabolismo , Técnicas de Inativação de Genes , Complexo de Golgi/metabolismo , Células HEK293 , Hepatite C/virologia , Humanos , Fosfatos de Fosfatidilinositol , RNA Viral/genética
3.
Arch Virol ; 164(1): 225-234, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30357482

RESUMO

Dengue virus (DENV) infections are a major cause of morbidity and mortality in tropical and subtropical areas. Several compounds that act against DENV have been studied in clinical trials to date; however, there have been no compounds identified that are effective in reducing the severity of the clinical manifestations. To explore anti-DENV drugs, we examined small molecules that interact with DENV NS1 and inhibit DENV replication. Cyclofenil, which is a selective estrogen receptor modulator (SERM) and has been used clinically as an ovulation-inducing drug, showed an inhibitory effect on DENV replication in mammalian cells but not in mosquito cells. Other SERMs also inhibited DENV replication in mammalian cells, but cyclofenil showed the weakest cytotoxicity among these SERMs. Cyclofenil also inhibited the replication of Zika virus. A time-of-addition assay suggested that cyclofenil may interfere with two stages of the DENV life cycle: the translation-RNA synthesis and assembly-maturation stages. However, the level of intracellular infectious particles decreased more drastically after treatment with cyclofenil than the viral RNA level did, indicating that the assembly-maturation stage might be the main target of cyclofenil. In electron microscopy analysis, many aggregated particles were detected in DENV-infected cells in the presence of cyclofenil, supporting the possibility that cyclofenil impedes the process of assembly and maturation of DENV.


Assuntos
Antivirais/farmacologia , Ciclofenil/farmacologia , Vírus da Dengue/efeitos dos fármacos , Animais , Antivirais/administração & dosagem , Sobrevivência Celular , Chlorocebus aethiops , Ciclofenil/administração & dosagem , Relação Dose-Resposta a Droga , Fármacos para a Fertilidade Feminina/administração & dosagem , Fármacos para a Fertilidade Feminina/farmacologia , Células Vero , Replicação Viral/efeitos dos fármacos
4.
PLoS Pathog ; 14(11): e1007372, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30496280

RESUMO

Apolipoprotein E (ApoE) belongs to a class of cellular proteins involved in lipid metabolism. ApoE is a polymorphic protein produced primarily in macrophages and astrocytes. Different isoforms of ApoE have been associated with susceptibility to various diseases including Alzheimer's and cardiovascular diseases. ApoE expression has also been found to affect susceptibility to several viral diseases, including Hepatitis C and E, but its effect on the life cycle of HIV-1 remains obscure. In this study, we initially found that HIV-1 infection selectively up-regulated ApoE in human monocyte-derived macrophages (MDMs). Interestingly, ApoE knockdown in MDMs enhanced the production and infectivity of HIV-1, and was associated with increased localization of viral envelope (Env) proteins to the cell surface. Consistent with this, ApoE over-expression in 293T cells suppressed Env expression and viral infectivity, which was also observed with HIV-2 Env, but not with VSV-G Env. Mechanistic studies revealed that the C-terminal region of ApoE was required for its inhibitory effect on HIV-1 Env expression. Moreover, we found that ApoE and Env co-localized in the cells, and ApoE associated with gp160, the precursor form of Env, and that the suppression of Env expression by ApoE was cancelled by the treatment with lysosomal inhibitors. Overall, our study revealed that ApoE is an HIV-1-inducible inhibitor of viral production and infectivity in macrophages that exerts its anti-HIV-1 activity through association with gp160 Env via the C-terminal region, which results in subsequent degradation of gp160 Env in the lysosomes.


Assuntos
Apolipoproteínas E/fisiologia , Infecções por HIV/metabolismo , Macrófagos/metabolismo , Adulto , Apolipoproteínas/metabolismo , Apolipoproteínas E/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Regulação da Expressão Gênica/genética , Células HEK293 , Proteína gp120 do Envelope de HIV/metabolismo , Proteína gp41 do Envelope de HIV/metabolismo , Infecções por HIV/prevenção & controle , HIV-1/metabolismo , Humanos , Macrófagos/virologia , Masculino , Regulação para Cima , Replicação Viral/genética , Replicação Viral/fisiologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo
5.
J Gen Virol ; 97(5): 1249-1260, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26850058

RESUMO

Previously, we reported that a new genetically diverse CCR5 (R5) tropic simian/human immunodeficiency virus (SHIV-MK38) adapted to rhesus monkeys became more neutralization resistant to SHIV-infected plasma than did the parental SHIV-KS661 clone. Here, to clarify the significance of the neutralization-resistant phenotype of SHIV in a macaque model, we initially investigated the precise neutralization phenotype of the SHIVs, including SHIV-MK38 molecular clones, using SHIV-MK38-infected plasma, a pooled plasma of human immunodeficiency virus (HIV)-infected individuals, soluble CD4 and anti-HIV-1 neutralizing mAbs, the epitopes of which were known. The results show that SHIV-KS661 had tier 1 neutralization sensitivity, but monkey-adapted R5 tropic SHIV-MK38 acquired neutralization resistance similar to that of tier 2 or 3 as a clone virus. Sequence analysis of the env gene suggested that the neutralization-resistant phenotype of SHIV-MK38 was acquired by conformational changes in Env associated with the net charge and potential N-linked glycosylation sites. To examine the relationship between neutralization phenotype and stably persistent infection in monkeys, we performed in vivo rectal inoculation experiments using a SHIV-MK38 molecular clone. The results showed that one of three rhesus monkeys exhibited durable infection with a plasma viral load of 105 copies ml- 1 despite the high antibody responses that occurred in the host. Whilst further improvements are required in the development of a challenge virus, it will be useful to generate a neutralization-resistant R5 tropic molecular clone of the SHIV-89.6 lineage commonly used for vaccine development - a result that can be used to explore the foundation of AIDS pathogenesis.


Assuntos
Proteínas Virais/metabolismo , Animais , Linhagem Celular , Clonagem Molecular , HIV , Humanos , Macaca mulatta , Modelos Moleculares , Conformação Proteica , RNA Viral/genética , Vírus da Imunodeficiência Símia , Proteínas Virais/genética , Replicação Viral
6.
PLoS Pathog ; 12(1): e1005357, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26735137

RESUMO

Dengue virus (DENV) is one of the most important arthropod-borne pathogens that cause life-threatening diseases in humans. However, no vaccine or specific antiviral is available for dengue. As seen in other RNA viruses, the innate immune system plays a key role in controlling DENV infection and disease outcome. Although the interferon (IFN) response, which is central to host protective immunity, has been reported to limit DENV replication, the molecular details of how DENV infection is modulated by IFN treatment are elusive. In this study, by employing a gain-of-function screen using a type I IFN-treated cell-derived cDNA library, we identified a previously uncharacterized gene, C19orf66, as an IFN-stimulated gene (ISG) that inhibits DENV replication, which we named Repressor of yield of DENV (RyDEN). Overexpression and gene knockdown experiments revealed that expression of RyDEN confers resistance to all serotypes of DENV in human cells. RyDEN expression also limited the replication of hepatitis C virus, Kunjin virus, Chikungunya virus, herpes simplex virus type 1, and human adenovirus. Importantly, RyDEN was considered to be a crucial effector molecule in the IFN-mediated anti-DENV response. When affinity purification-mass spectrometry analysis was performed, RyDEN was revealed to form a complex with cellular mRNA-binding proteins, poly(A)-binding protein cytoplasmic 1 (PABPC1), and La motif-related protein 1 (LARP1). Interestingly, PABPC1 and LARP1 were found to be positive modulators of DENV replication. Since RyDEN influenced intracellular events on DENV replication and, suppression of protein synthesis from DENV-based reporter construct RNA was also observed in RyDEN-expressing cells, our data suggest that RyDEN is likely to interfere with the translation of DENV via interaction with viral RNA and cellular mRNA-binding proteins, resulting in the inhibition of virus replication in infected cells.


Assuntos
Vírus da Dengue/fisiologia , Dengue/imunologia , Interferons/imunologia , Proteínas Virais/genética , Replicação Viral/imunologia , Linhagem Celular , Vírus da Dengue/crescimento & desenvolvimento , Técnicas de Silenciamento de Genes , Humanos , Immunoblotting , Imunoprecipitação , Espectrometria de Massas , Reação em Cadeia da Polimerase , Transfecção
7.
Curr Opin Virol ; 1(1): 19-26, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22440563

RESUMO

Many chronic hepatitis patients with hepatitis C virus (HCV) are observed to have a degree of steatosis which is a factor in the progression of liver diseases. Transgenic mice expressing HCV core protein develop liver steatosis before the onset of hepatocellular carcinoma, suggesting active involvement of HCV in the de-regulation of lipid metabolism in host cells. However, the role of lipid metabolism in HCV life cycle has not been fully understood until the establishment of in vitro HCV infection and replication system. In this review we focus on HCV production with regard to modification of lipid metabolism observed in an in vitro HCV infection and replication system. The importance of lipid droplet to HCV production has been recognized, possibly at the stage of virus assembly, although the precise mechanism of lipid droplet for virus production remains elusive. Association of lipoprotein with HCV in circulating blood in chronic hepatitis C patients is observed. In fact, HCV released from culture medium is also associated with lipoprotein. The fact that treatment of HCV fraction with lipoprotein lipase (LPL) abolished infectivity indicates the essential role of lipoprotein's association with virus particle in the virus life cycle. In particular, apolipoprotein E (ApoE), a component of lipoprotein associated with HCV plays a pivotal role in HCV infectivity by functioning as a virus ligand to lipoprotein receptor that also functions as HCV receptor. These results strongly suggest the direct involvement of lipid metabolism in the regulation of the HCV life cycle.


Assuntos
Hepacivirus/fisiologia , Hepatite C/metabolismo , Lipoproteínas/metabolismo , Animais , Hepacivirus/genética , Hepatite C/virologia , Humanos , Montagem de Vírus
8.
J Virol ; 84(22): 12048-57, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20826689

RESUMO

Hepatitis C virus (HCV) is a causative agent of chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. HCV in circulating blood associates with lipoproteins such as very low density lipoprotein (VLDL) and low-density lipoprotein (LDL). Although these associations suggest that lipoproteins are important for HCV infectivity, the roles of lipoproteins in HCV production and infectivity are not fully understood. To clarify the roles of lipoprotein in the HCV life cycle, we analyzed the effect of apolipoprotein E (ApoE), a component of lipoprotein, on virus production and infectivity. The production of infectious HCV was significantly reduced by the knockdown of ApoE. When an ApoE mutant that fails to be secreted into the culture medium was used, the amount of infectious HCV in the culture medium was dramatically reduced; the infectious HCV accumulated inside these cells, suggesting that infectious HCV must associate with ApoE prior to virus release. We performed rescue experiments in which ApoE isoforms were ectopically expressed in cells depleted of endogenous ApoE. The ectopic expression of the ApoE2 isoform, which has low affinity for the LDL receptor (LDLR), resulted in poor recovery of infectious HCV, whereas the expression of other isoforms, ApoE3 and ApoE4, rescued the production of infectious virus, raising it to an almost normal level. Furthermore, we found that the infectivity of HCV required both the LDLR and scavenger receptor class B, member I (SR-BI), ligands for ApoE. These findings indicate that ApoE is an essential apolipoprotein for HCV infectivity.


Assuntos
Apolipoproteína E2/metabolismo , Apolipoproteína E3/metabolismo , Apolipoproteína E4/metabolismo , Hepacivirus/fisiologia , Hepatite C/metabolismo , Apolipoproteína E2/genética , Apolipoproteína E3/genética , Apolipoproteína E4/genética , Linhagem Celular Tumoral , Hepatite C/genética , Hepatite C/virologia , Humanos , Ligação Proteica
9.
Artigo em Inglês | MEDLINE | ID: mdl-19644222

RESUMO

Hepatitis C virus (HCV) establishes a persistent infection and causes chronic hepatitis. Chronic hepatitis patients often develop hepatic cirrhosis and progress to liver cancer. The development of this pathological condition is linked to the persistent infection of the virus. In other words, viral replication/multiplication may contribute to disease pathology. Accumulating clinical studies suggest that HCV infection alters lipid metabolism, and thus causes fatty liver. It has been reported that this abnormal metabolism exacerbates hepatic diseases. Recently, we revealed that lipid droplets play a key role in HCV replication. Understanding the molecular mechanism of HCV replication will help elucidate the pathogenic mechanism and develop preventive measures that inhibit disease manifestation by blocking persistent infection. In this review, we outline recent findings on the function of lipid droplets in the HCV replication cycle and describe the relationship between the development of liver diseases and virus replication.


Assuntos
Hepacivirus/fisiologia , Metabolismo dos Lipídeos/fisiologia , Replicação Viral/fisiologia , Animais , Células/citologia , Células/efeitos dos fármacos , Células/metabolismo , Detergentes/farmacologia , Hepacivirus/efeitos dos fármacos , Hepacivirus/genética , Hepacivirus/crescimento & desenvolvimento , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Proteínas Virais/química , Proteínas Virais/metabolismo , Replicação Viral/efeitos dos fármacos
10.
J Virol ; 83(13): 6922-8, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19369330

RESUMO

Replication and infectivity of hepatitis C virus (HCV) with a defective genome is ambiguous. We molecularly cloned 38 HCV isolates with defective genomes from 18 patient sera. The structural regions were widely deleted, with the 5' untranslated, core, and NS3-NS5B regions preserved. All of the deletions were in frame, indicating that they are translatable to the authentic terminus. Phylogenetic analyses showed self-replication of the defective genomes independent of full genomes. We generated a defective genome of chimeric HCV to mimic the defective isolate in the serum. By using this, we demonstrated for the first time that the defective genome, as it is circulating in the blood, can be encapsidated as an infectious particle by trans complementation of the structural proteins.


Assuntos
Genoma Viral , Hepacivirus/genética , Hepacivirus/patogenicidade , Sequência de Aminoácidos , Sequência de Bases , Linhagem Celular Tumoral , Hepacivirus/fisiologia , Humanos , Dados de Sequência Molecular , Filogenia , RNA Viral/genética , Análise de Sequência de RNA , Deleção de Sequência , Montagem de Vírus
11.
J Biol Chem ; 284(12): 8033-41, 2009 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-19164291

RESUMO

Reactivation of the Epstein-Barr virus from latency is dependent on expression of the viral BZLF1 protein. The BZLF1 promoter (Zp) normally exhibits only low basal activity but is activated in response to chemical inducers such as 12-O-tetradecanoylphorbol-13-acetate and calcium ionophore. We found here that Transducer of Regulated cAMP-response Element-binding Protein (CREB) (TORC) 2 enhances Zp activity 10-fold and more than 100-fold with co-expression of the BZLF1 protein. Mutational analysis of Zp revealed that the activation by TORC is dependent on ZII and ZIII cis elements, binding sites for CREB family transcriptional factors and the BZLF1 protein, respectively. Immunoprecipitation, chromatin immunoprecipitation, and reporter assay using Gal4-luc and Gal4BD-BZLF1 fusion protein indicate that TORC2 interacts with BZLF1, and that the complex is efficiently recruited onto Zp. These observations clearly indicate that TORC2 activates the promoter through interaction with the BZLF1 protein as well as CREB family transcriptional factors. Induction of the lytic replication resulted in the translocation of TORC2 from cytoplasm to viral replication compartments in nuclei, and furthermore, activation of Zp by TORC2 was augmented by calcium-regulated phosphatase, calcineurin. Silencing of endogenous TORC2 gene expression by RNA interference decreased the levels of the BZLF1 protein in response to 12-O-tetradecanoylphorbol-13-acetate/ionophore. Based on these results, we conclude that Epstein-Barr virus exploits the calcineurin-TORC signaling pathway through interactions between TORC and the BZLF1 protein in reactivation from latency.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Herpesvirus Humano 4/fisiologia , Elementos de Resposta/fisiologia , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Ativação Viral/fisiologia , Latência Viral/fisiologia , Carcinógenos/farmacologia , Linhagem Celular Tumoral , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Regulação Viral da Expressão Gênica/efeitos dos fármacos , Regulação Viral da Expressão Gênica/fisiologia , Humanos , Mutação , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/fisiologia , Acetato de Tetradecanoilforbol/farmacologia , Transativadores/genética , Fatores de Transcrição/genética , Ativação Viral/efeitos dos fármacos , Latência Viral/efeitos dos fármacos
12.
Nat Cell Biol ; 9(9): 1089-97, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17721513

RESUMO

The lipid droplet (LD) is an organelle that is used for the storage of neutral lipids. It dynamically moves through the cytoplasm, interacting with other organelles, including the endoplasmic reticulum (ER). These interactions are thought to facilitate the transport of lipids and proteins to other organelles. The hepatitis C virus (HCV) is a causative agent of chronic liver diseases. HCV capsid protein (Core) associates with the LD, envelope proteins E1 and E2 reside in the ER lumen, and the viral replicase is assumed to localize on ER-derived membranes. How and where HCV particles are assembled, however, is poorly understood. Here, we show that the LD is involved in the production of infectious virus particles. We demonstrate that Core recruits nonstructural (NS) proteins and replication complexes to LD-associated membranes, and that this recruitment is critical for producing infectious viruses. Furthermore, virus particles were observed in close proximity to LDs, indicating that some steps of virus assembly take place around LDs. This study reveals a novel function of LDs in the assembly of infectious HCV and provides a new perspective on how viruses usurp cellular functions.


Assuntos
Hepacivirus/fisiologia , Lipídeos/química , Organelas/metabolismo , Proteínas do Core Viral/metabolismo , Replicação Viral , Animais , Linhagem Celular , Humanos , Organelas/química , Organelas/ultraestrutura , Proteínas não Estruturais Virais/metabolismo
13.
J Biol Chem ; 282(39): 28335-28343, 2007 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-17644518

RESUMO

By associating with cyclic AMP-responsive element-binding protein (CREB), the human T-cell leukemia virus type 1 (HTLV-1) Tax protein activates transcription from the HTLV-1 long terminal repeat (LTR), which contains multiple cyclic AMP-responsive elements. The transducers of regulated CREB activity (TORCs) were a recently identified family of CREB co-activators that bind to CREB to enhance CRE-mediated transcription. TORC3, a TORC family protein, dramatically enhances Tax-mediated transcription from the LTR. In this study, we performed a yeast two-hybrid screen using the N-terminal region of TORC3 as bait and identified B-cell chronic lymphatic leukemia protein 3 (BCL3) as a protein interacting with TORC3. This interaction was confirmed by glutathione S-transferase pulldown assays and co-immunoprecipitation experiments with detection by Western blotting. The ankyrin repeat domain of BCL3 interacted with TORC3. By using a luciferase assay, we determined that BCL3 inhibited transcription from the HTLV-1 LTR in a manner dependent on TORC3. Knockdown of endogenous BCL3 using RNA interference enhanced transcriptional activation of CRE. Treatment with trichostatin A, a potent inhibitor of the transcriptional co-repressor HDAC, partially reversed the inhibitory effect of BCL3. These results suggest that BCL3 functions as a repressor of HTLV-1 LTR-mediated transcription through interactions with TORC3. In addition to stimulating transcription from the HTLV-1 LTR, Tax also enhances BCL3 expression; thus, transcription from the LTR is regulated by both positive and negative feedback mechanisms.


Assuntos
Vírus Linfotrópico T Tipo 1 Humano/fisiologia , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Repressoras/metabolismo , Sequências Repetidas Terminais/fisiologia , Fatores de Transcrição/metabolismo , Transcrição Gênica/fisiologia , Proteína 3 do Linfoma de Células B , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Inibidores Enzimáticos/farmacologia , Produtos do Gene tax/metabolismo , Células HeLa , Inibidores de Histona Desacetilases , Humanos , Ácidos Hidroxâmicos/farmacologia , Ligação Proteica/fisiologia , Estrutura Terciária de Proteína/fisiologia , Interferência de RNA , Transcrição Gênica/efeitos dos fármacos , Ativação Transcricional/efeitos dos fármacos , Ativação Transcricional/fisiologia
14.
J Virol ; 80(9): 4510-20, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16611911

RESUMO

Recently, a production system for infectious particles of hepatitis C virus (HCV) utilizing the genotype 2a JFH1 strain has been developed. This strain has a high capacity for replication in the cells. Cyclosporine (CsA) has a suppressive effect on HCV replication. In this report, we characterize the anti-HCV effect of CsA. We observe that the presence of viral structural proteins does not influence the anti-HCV activity of CsA. Among HCV strains, the replication of genotype 1b replicons was strongly suppressed by treatment with CsA. In contrast, JFH1 replication was less sensitive to CsA and its analog, NIM811. Replication of JFH1 did not require the cellular replication cofactor, cyclophilin B (CyPB). CyPB stimulated the RNA binding activity of NS5B in the genotype 1b replicon but not the genotype 2a JFH1 strain. These findings provide an insight into the mechanisms of diversity governing virus-cell interactions and in the sensitivity of these strains to antiviral agents.


Assuntos
Ciclosporina/farmacologia , Hepacivirus/efeitos dos fármacos , Hepacivirus/fisiologia , Replicação Viral/efeitos dos fármacos , Sequência de Aminoácidos , Linhagem Celular Tumoral , Sequência Conservada , Genoma Viral/genética , Genótipo , Humanos , Dados de Sequência Molecular , RNA Viral/metabolismo , Replicon/genética , Alinhamento de Sequência , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/metabolismo
15.
Biochem Biophys Res Commun ; 343(3): 879-84, 2006 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-16564500

RESUMO

Hepatitis C virus (HCV) is a major causative agent of hepatocellular carcinoma. We recently discovered that the immunosuppressant cyclosporin A (CsA) and its analogue lacking immunosuppressive function, NIM811, strongly suppress the replication of HCV in cell culture. Inhibition of a cellular replication cofactor, cyclophilin (CyP) B, is critical for its anti-HCV effects. Here, we explored the potential use of CyP inhibitors for HCV treatment by analyzing the HCV replicon system. Treatment with CsA and NIM811 for 7 days reduced HCV RNA levels by 2-3 logs, and treatment for 3 weeks reduced HCV RNA to undetectable levels. NIM811 exerted higher anti-HCV activity than CsA at lower concentrations. Both CyP inhibitors rapidly reduced HCV RNA levels even further in combination with IFNalpha without modifying the IFNalpha signal transduction pathway. In conclusion, CyP inhibitors may provide a novel strategy for anti-HCV treatment.


Assuntos
Antivirais/farmacologia , Ciclofilinas/antagonistas & inibidores , Ciclosporina/farmacologia , Hepacivirus/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Hepacivirus/genética , Interferon-alfa/farmacologia , Cinética , Transdução de Sinais , Replicação Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA