Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 632: 40-47, 2022 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-36198202

RESUMO

Autophagy is a non-selective action in which cells degrade parts of themselves, reusing degraded cellular components. Among autophagy-related gene (ATG) family members, ATG4 proteins play crucial roles in the microtubule-associated protein 1 light chain 3 (LC3) phosphatidylethanolamine (PE) system which is essential for autophagosome maturation. Although autophagy has been shown to be involved in osteoclastic bone resorption, the role of ATG4/LC3 in bone resorption remains unclear. When mouse bone marrow cells were treated with various concentrations of NSC185058 (NSC), a specific inhibitor of ATG4B, 1 h prior to treatment with receptor activator of NF-κB ligand (RANKL) in the presence of macrophage colony stimulating factor (M-CSF), NSC inhibited osteoclastogenesis in a dose-dependent manner. Addition of NSC in the late stages of osteoclast differentiation suppressed multinucleation and reduced the expression of markers for mature osteoclasts such as Dc-stamp, Mmp9, and Ctsk. NSC also suppressed actin ring formation and pit formation in mature osteoclasts. When a periodontitis model involving eight-week-old male mice in which the right maxillary second molar had been ligated with silk thread was injected with or without NSC, alveolar bone resorption was suppressed by a decrease in the number of osteoclasts in the NSC-treated group. These results suggest that LC3 is important for the maturation of osteoclasts and that LC3 inhibition is a new therapeutic strategy for periodontal disease.


Assuntos
Diferenciação Celular , Osteoclastos , Animais , Masculino , Camundongos , Actinas/metabolismo , Perda do Osso Alveolar , Ligantes , Fator Estimulador de Colônias de Macrófagos/farmacologia , Fator Estimulador de Colônias de Macrófagos/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Proteínas Associadas aos Microtúbulos/antagonistas & inibidores , Proteínas Associadas aos Microtúbulos/metabolismo , Osteoclastos/metabolismo , Fosfatidiletanolaminas/metabolismo , Receptor Ativador de Fator Nuclear kappa-B/metabolismo , Seda , Reabsorção Óssea/genética , Reabsorção Óssea/metabolismo , Diferenciação Celular/genética , Proteínas Relacionadas à Autofagia/antagonistas & inibidores , Proteínas Relacionadas à Autofagia/metabolismo , Cisteína Endopeptidases/metabolismo
2.
Bone ; 135: 115316, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32169603

RESUMO

Musculoskeletal diseases and disorders, including osteoporosis and rheumatoid arthritis are diseases that threaten a healthy life expectancy, and in order to extend the healthy life expectancy of elderly people, it is important to prevent bone and joint diseases and disorders. We previously reported that alymphoplasia (aly/aly) mice, which have a loss-of-function mutation in the Nik gene involved in the processing of p100 to p52 in the alternative NF-κB pathway, show mild osteopetrosis with a decrease in the osteoclast number, suggesting that the alternative NF-κB pathway is a potential drug target for ameliorating bone diseases. Recently, the novel NF-κB-inducing kinase (NIK)-specific inhibitor compound 33 (Cpd33) was developed, and we examined its effect on osteoclastic bone resorption in vitro and in vivo. Cpd33 inhibited the receptor activator of NF-κB ligand (RANKL)-induced osteoclastogenesis accompanied by a decrease in the expression of nfatc1, dc-stamp, and cathepsin K, markers of osteoclast differentiation, without affecting the cell viability, in a dose-dependent manner. Cdp33 specifically suppressed the RANKL-induced processing of p100 to p52 but not the phosphorylation of p65 or the degradation or resynthesis of IκBα in osteoclast precursors. Cpd33 also suppressed the bone-resorbing activity in mature osteoclasts. Furthermore, Cdp33 treatment prevented bone loss by suppressing the osteoclast formation without affecting the osteoblastic bone formation in ovariectomized mice. Taken together, NIK inhibitors may be a new option for patients with a reduced response to conventional pharmacotherapy or who have serious side effects.


Assuntos
Doenças Ósseas Metabólicas , Reabsorção Óssea , Idoso , Animais , Reabsorção Óssea/tratamento farmacológico , Reabsorção Óssea/prevenção & controle , Diferenciação Celular , Humanos , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Fatores de Transcrição NFATC/metabolismo , Osteoclastos/metabolismo , Proteínas Serina-Treonina Quinases , Ligante RANK/metabolismo , Quinase Induzida por NF-kappaB
3.
Cell Biochem Funct ; 38(3): 300-308, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31887784

RESUMO

Podosome formation in osteoclasts is an important initial step in osteoclastic bone resorption. Mice lacking c-Src (c-Src-/- ) exhibited osteopetrosis due to a lack of podosome formation in osteoclasts. We previously identified p130Cas (Crk-associated substrate [Cas]) as one of c-Src downstream molecule and osteoclast-specific p130Cas-deficient (p130CasΔOCL-/- ) mice also exhibited a similar phenotype to c-Src-/- mice, indicating that the c-Src/p130Cas plays an important role for bone resorption by osteoclasts. In this study, we performed a cDNA microarray and compared the gene profiles of osteoclasts from c-Src-/- or p130CasΔOCL-/- mice with wild-type (WT) osteoclasts to identify downstream molecules of c-Src/p130Cas involved in bone resorption. Among several genes that were commonly downregulated in both c-Src-/- and p130CasΔOCL-/- osteoclasts, we identified kinesin family protein 1c (Kif1c), which regulates the cytoskeletal organization. Reduced Kif1c expression was observed in both c-Src-/- and p130CasΔOCL-/- osteoclasts compared with WT osteoclasts. Kif1c exhibited a broad tissue distribution, including osteoclasts. Knockdown of Kif1c expression using shRNAs in WT osteoclasts suppressed actin ring formation. Kif1c overexpression restored bone resorption subsequent to actin ring formation in p130CasΔOCL-/- osteoclasts but not c-Src-/- osteoclasts, suggesting that Kif1c regulates osteoclastic bone resorption in the downstream of p130Cas (191 words). SIGNIFICANCE OF THE STUDY: We previously showed that the c-Src/p130Cas (Cas) plays an important role for bone resorption by osteoclasts. In this study, we identified kinesin family protein 1c (Kif1c), which regulates the cytoskeletal organization, as a downstream molecule of c-Src/p130Cas axis, using cDNA microarray. Knockdown of Kif1c expression using shRNAs in wild-type osteoclasts suppressed actin ring formation. Kif1c overexpression restored bone resorption subsequent to actin ring formation in osteoclast-specific p130Cas-deficient (p130CasΔOCL-/- ) osteoclasts but not c-Src-/- osteoclasts, suggesting that Kif1c regulates osteoclastic bone resorption in the downstream of p130Cas.


Assuntos
Reabsorção Óssea , Proteína Substrato Associada a Crk/metabolismo , Regulação da Expressão Gênica , Cinesinas/metabolismo , Osteoclastos/metabolismo , Actinas/metabolismo , Animais , Osso e Ossos/metabolismo , Proteína Tirosina Quinase CSK/genética , Proteína Tirosina Quinase CSK/metabolismo , Células HEK293 , Heterozigoto , Humanos , Fator Estimulador de Colônias de Macrófagos/metabolismo , Camundongos , Camundongos Transgênicos , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Fosforilação , RNA Interferente Pequeno/metabolismo , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Dedos de Zinco
4.
Cells ; 8(12)2019 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-31847314

RESUMO

Nuclear factor-κB (NF-κB) is a transcription factor that regulates the expression of various genes involved in inflammation and the immune response. The activation of NF-κB occurs via two pathways: inflammatory cytokines, such as TNF-α and IL-1ß, activate the "classical pathway", and cytokines involved in lymph node formation, such as CD40L, activate the "alternative pathway". NF-κB1 (p50) and NF-κB2 (p52) double-knockout mice exhibited severe osteopetrosis due to the total lack of osteoclasts, suggesting that NF-κB activation is required for osteoclast differentiation. These results indicate that NF-κB may be a therapeutic target for inflammatory bone diseases, such as rheumatoid arthritis and periodontal disease. On the other hand, mice that express the dominant negative form of IκB kinase (IKK)-ß specifically in osteoblasts exhibited increased bone mass, but there was no change in osteoclast numbers. Therefore, inhibition of NF-κB is thought to promote bone formation. Taken together, the inhibition of NF-κB leads to "killing two birds with one stone": it suppresses bone resorption and promotes bone formation. This review describes the role of NF-κB in physiological bone metabolism, pathologic bone destruction, and bone regeneration.


Assuntos
Desenvolvimento Ósseo/fisiologia , Doenças Ósseas/metabolismo , NF-kappa B/metabolismo , Animais , Desenvolvimento Ósseo/genética , Doenças Ósseas/fisiopatologia , Reabsorção Óssea/metabolismo , Diferenciação Celular/efeitos dos fármacos , Citocinas/metabolismo , Humanos , Proteínas I-kappa B/metabolismo , Inflamação , NF-kappa B/fisiologia , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Osteogênese/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo
5.
J Cell Biochem ; 120(11): 18793-18804, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31243813

RESUMO

Skeletal tissue homeostasis is maintained via the balance of osteoclastic bone resorption and osteoblastic bone formation. Autophagy and apoptosis are essential for the maintenance of homeostasis and normal development in cells and tissues. We found that Bax-interacting factor 1 (Bif-1/Endophillin B1/SH3GLB1), involving in autophagy and apoptosis, was upregulated during osteoclastogenesis. Furthermore, mature osteoclasts expressed Bif-1 in the cytosol, particularly the perinuclear regions and podosome, suggesting that Bif-1 regulates osteoclastic bone resorption. Bif-1-deficient (Bif-1 -/- ) mice showed increased trabecular bone volume and trabecular number. Histological analyses indicated that the osteoclast numbers increased in Bif-1 -/- mice. Consistent with the in vivo results, osteoclastogenesis induced by receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL) was accelerated in Bif-1 -/- mice without affecting RANKL-induced activation of RANK downstream signals, such as NF-κB and mitogen-activated protein kinases (MAPKs), CD115/RANK expression in osteoclast precursors, osteoclastic bone-resorbing activity and the survival rate. Unexpectedly, both the bone formation rate and osteoblast surface substantially increased in Bif-1 -/- mice. Treatment with ß-glycerophosphate (ß-GP) and ascorbic acid (A.A) enhanced osteoblastic differentiation and mineralization in Bif-1 -/- mice. Finally, bone marrow cells from Bif-1 -/- mice showed a significantly higher colony-forming efficacy by the treatment with or without ß-GP and A.A than cells from wild-type (WT) mice, suggesting that cells from Bif-1 -/- mice had higher clonogenicity and self-renewal activity than those from WT mice. In summary, Bif-1 might regulate bone homeostasis by controlling the differentiation and function of both osteoclasts and osteoblasts (235 words).


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Osso Esponjoso/metabolismo , Homeostase , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Osso Esponjoso/citologia , Camundongos , Camundongos Knockout , Osteoblastos/citologia , Osteoclastos/citologia , Ligante RANK/genética , Ligante RANK/metabolismo , Receptor Ativador de Fator Nuclear kappa-B/genética , Receptor Ativador de Fator Nuclear kappa-B/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA