RESUMO
Antimicrobial resistance poses a serious threat to human health worldwide and its incidence continues to increase owing to the overuse of antibiotics and other factors. Macrolide antibiotics such as erythromycin (EM) have immunomodulatory effects in addition to their antibacterial activity. Long-term, low-dose administration of macrolides has shown clinical benefits in treating non-infectious inflammatory respiratory diseases. However, this practice may also increase the emergence of drug-resistant bacteria. In this study, we synthesized a series of EM derivatives, and screened them for two criteria: (i) lack of antibacterial activity and (ii) ability to suppress tumor necrosis factor-α (TNF-α) production in THP-1 cells stimulated with lipopolysaccharide. Among the 37 synthesized derivatives, we identified a novel 12-membered ring macrolide EM982 that lacked antibacterial activity against Staphylococcus aureus and suppressed the production of TNF-α and other cytokines. The effects of EM982 on Toll-like receptor 4 (TLR4) signaling were analyzed using a reporter assay and Western blotting. The reporter assay showed that EM982 suppressed the activation of transcription factors, NF-κB and/or activator protein 1 (AP-1), in HEK293 cells expressing human TLR4. Western blotting showed that EM982 inhibited the phosphorylation of both IκB kinase (IKK) ß and IκBα, which function upstream of NF-κB, whereas it did not affect the phosphorylation of p38 mitogen-activated protein kinase, extracellular signal-regulated kinase, and c-Jun N-terminal kinase, which act upstream of AP-1. These results suggest that EM982 suppresses cytokine production by inhibiting phosphorylation of IKKß and IκBα, resulting in the inactivation of NF-κB.
Assuntos
Citocinas , Quinase I-kappa B , Inibidor de NF-kappaB alfa , Humanos , Quinase I-kappa B/metabolismo , Fosforilação/efeitos dos fármacos , Inibidor de NF-kappaB alfa/metabolismo , Citocinas/metabolismo , Eritromicina/farmacologia , Eritromicina/química , Células THP-1 , Fator de Necrose Tumoral alfa/metabolismo , Antibacterianos/farmacologia , Antibacterianos/química , Macrolídeos/farmacologia , Macrolídeos/química , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismoRESUMO
Pneumococcus is the main cause of bacterial pneumonia. Pneumococcal infection has been shown to cause elastase, an intracellular host defense factor, to leak from neutrophils. However, when neutrophil elastase (NE) leaks extracellularly, it can degrade host cell surface proteins such as epidermal growth factor receptor (EGFR) and potentially disrupt the alveolar epithelial barrier. In this study, we hypothesized that NE degrades the extracellular domain (ECD) of EGFR in alveolar epithelial cells and inhibits alveolar epithelial repair. Using SDS-PAGE, we showed that NE degraded the recombinant EGFR ECD and its ligand epidermal growth factor, and that the degradation of these proteins was counteracted by NE inhibitors. Furthermore, we confirmed the degradation by NE of EGFR expressed in alveolar epithelial cells in vitro. We showed that intracellular uptake of epidermal growth factor and EGFR signaling was downregulated in alveolar epithelial cells exposed to NE and found that cell proliferation was inhibited in these cells These negative effects of NE on cell proliferation were abolished by NE inhibitors. Finally, we confirmed the degradation of EGFR by NE in vivo. Fragments of EGFR ECD were detected in bronchoalveolar lavage fluid from pneumococcal pneumonia mice, and the percentage of cells positive for a cell proliferation marker Ki67 in lung tissue was reduced. In contrast, administration of an NE inhibitor decreased EGFR fragments in bronchoalveolar lavage fluid and increased the percentage of Ki67-positive cells. These findings suggest that degradation of EGFR by NE could inhibit the repair of alveolar epithelium and cause severe pneumonia.
Assuntos
Receptores ErbB , Elastase de Leucócito , Pneumonia Pneumocócica , Animais , Camundongos , Líquido da Lavagem Broncoalveolar , Células Epiteliais/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Antígeno Ki-67/metabolismo , Elastase de Leucócito/metabolismo , Pulmão/metabolismo , Pneumonia Pneumocócica/metabolismo , Proteínas Secretadas Inibidoras de Proteinases/metabolismoRESUMO
OBJECTIVE: This study aimed to clarify the antibacterial mechanism and antibiofilm effect of soybean-derived peptide BCBS-11 against periodontopathic bacteria. DESIGN: The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of BCBS-11 against Porphyromonas gingivalis (P. gingivalis), Fusobacterium nucleatum (F. nucleatum), and Streptococcus mitis (S. mitis) were determined for the antibacterial mechanism. The effect of BCBS-11 on membrane permeability and depolarization activity were investigated using propidium iodide (PI) staining and 3, 3'-dipropylthiadicarbocyanine iodide (DiSC3-(5)) analysis. Monospecies and multispecies biofilms were cultured on 96-well plates. The amount of biofilm was determined using crystal violet staining to determine the inhibition of biofilm formation and the eradication of established biofilm using BCBS-11. The cytotoxicity of BCBS-11 was evaluated using 3-(4, 5-Dimethylthiazol-2-yl)- 2, 5-diphenyltetrazolium bromide (MTT) assay. RESULTS: The MIC and MBC indicated the bactericidal activity of BCBS-11 against P. gingivalis and F. nucleatum. The PI staining revealed that BCBS-11 disrupted the bacterial membrane integrity. The DiSC3-(5) analysis indicated that BCBS-11 depolarized the bacterial cytoplasmic membrane. These results indicate the antimicrobial action of BCBS-11 through membrane disruption and the collapse of membrane electrochemical gradient. BCBS-11 significantly inhibited the monospecies biofilm formation of P. gingivalis and F. nucleatum and also inhibited dual-species biofilm. BCBS-11 was not cytotoxic toward human oral epithelial cells. CONCLUSIONS: BCBS-11 inhibits the monospecies and multispecies biofilm formation of P. gingivalis and F. nucleatum, and their bactericidal activity results from membrane disruption.
Assuntos
Biofilmes , Glycine max , Antibacterianos/química , Antibacterianos/farmacologia , Fusobacterium nucleatum , Humanos , Peptídeos/farmacologia , Porphyromonas gingivalisRESUMO
Streptococcus pneumoniae is a causative pathogen of several human infectious diseases including community-acquired pneumonia. Pneumolysin (PLY), a pore-forming toxin, plays an important role in the pathogenesis of pneumococcal pneumonia. In recent years, the use of traditional natural substances for prevention has drawn attention because of the increasing antibacterial drug resistance of S. pneumoniae. According to some studies, green tea exhibits antibacterial and antitoxin activities. The polyphenols, namely the catechins epigallocatechin gallate (EGCG), epigallocatechin (EGC), epicatechin gallate (ECG), and epicatechin (EC) are largely responsible for these activities. Although matcha green tea provides more polyphenols than green tea infusions, its relationship with pneumococcal pneumonia remains unclear. In this study, we found that treatment with 20 mg/mL matcha supernatant exhibited significant antibacterial activity against S. pneumoniae regardless of antimicrobial resistance. In addition, the matcha supernatant suppressed PLY-mediated hemolysis and cytolysis by inhibiting PLY oligomerization. Moreover, the matcha supernatant and catechins inhibited PLY-mediated neutrophil death and the release of neutrophil elastase. These findings suggest that matcha green tea reduces the virulence of S. pneumoniae in vitro and may be a promising agent for the treatment of pneumococcal infections.
RESUMO
BACKGROUND: Sulfated vizantin, a recently developed immunostimulant, has also been found to exert antibiofilm properties. It acts not as a bactericide, but as a detachment-promoting agent by reducing the biofilm structural stability. This study aimed to investigate the mechanism underlying this activity and its species specificity using two distinct ex vivo oral biofilm models derived from human saliva. RESULTS: The biofilm, composed mainly of the genus Streptococcus and containing 50 µM of sulfated vizantin, detached significantly from its basal surface with rotation at 500 rpm for only 15 s, even when 0.2% sucrose was supplied. Expression analyses for genes associated with biofilm formation and bacterial adhesion following identification of the Streptococcus species, revealed that a variety of Streptococcus species in a cariogenic biofilm showed downregulation of genes encoding glucosyltransferases involved in the biosynthesis of water-soluble glucan. The expression of some genes encoding surface proteins was also downregulated. Of the two quorum sensing systems involved in the genus Streptococcus, the expression of luxS in three species, Streptococcus oralis, Streptococcus gordonii, and Streptococcus mutans, was significantly downregulated in the presence of 50 µM sulfated vizantin. Biofilm detachment may be facilitated by the reduced structural stability due to these modulations. As a non-specific reaction, 50 µM sulfated vizantin decreased cell surface hydrophobicity by binding to the cell surface, resulting in reduced bacterial adherence. CONCLUSION: Sulfated vizantin may be a candidate for a new antibiofilm strategy targeting the biofilm matrix while preserving the resident microflora.
Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Glicolipídeos/farmacologia , Streptococcus/fisiologia , Trealose/análogos & derivados , Antibacterianos/química , Aderência Bacteriana/efeitos dos fármacos , Aderência Bacteriana/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Cárie Dentária/microbiologia , Células Epiteliais/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Gengivite/microbiologia , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Glicolipídeos/química , Humanos , Percepção de Quorum/efeitos dos fármacos , Percepção de Quorum/genética , Streptococcus/classificação , Streptococcus/efeitos dos fármacos , Streptococcus/crescimento & desenvolvimento , Sulfatos/química , Trealose/química , Trealose/farmacologiaRESUMO
Streptococcus pneumoniae is often isolated from patients with community-acquired pneumonia. Antibiotics are the primary line of treatment for pneumococcal pneumonia; however, rising antimicrobial resistance is becoming more prevalent. Hinokitiol, which is isolated from trees in the cypress family, has been demonstrated to exert antibacterial activity against S. pneumoniae in vitro regardless of antimicrobial resistance. In this study, the efficacy of hinokitiol was investigated in a mouse pneumonia model. Male 8-week-old BALB/c mice were intratracheally infected with S. pneumoniae strains D39 (antimicrobial susceptible) and NU4471 (macrolide resistant). After 1 h, hinokitiol was injected via the tracheal route. Hinokitiol significantly decreased the number of S. pneumoniae in the bronchoalveolar lavage fluid (BALF) and the concentration of pneumococcal DNA in the serum, regardless of whether bacteria were resistant or susceptible to macrolides. In addition, hinokitiol decreased the infiltration of neutrophils in the lungs, as well as the concentration of inflammatory cytokines in the BALF and serum. Repeated hinokitiol injection at 18 h intervals showed downward trend in the number of S. pneumoniae in the BALF and the concentration of S. pneumoniae DNA in the serum with the number of hinokitiol administrations. These findings suggest that hinokitiol reduced bacterial load and suppressed excessive host immune response in the pneumonia mouse model. Accordingly, hinokitiol warrants further exploration as a potential candidate for the treatment of pneumococcal pneumonia.
Assuntos
Anti-Infecciosos/farmacologia , Monoterpenos/farmacologia , Pneumonia Pneumocócica/patologia , Streptococcus pneumoniae/isolamento & purificação , Tropolona/análogos & derivados , Animais , Anti-Infecciosos/uso terapêutico , Líquido da Lavagem Broncoalveolar/microbiologia , Quimiocina CXCL1/sangue , Quimiocina CXCL1/metabolismo , Citocinas/sangue , Citocinas/metabolismo , Farmacorresistência Bacteriana , Interleucina-6/sangue , Interleucina-6/metabolismo , Pulmão/imunologia , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Monoterpenos/uso terapêutico , Infiltração de Neutrófilos , Neutrófilos/citologia , Neutrófilos/imunologia , Neutrófilos/metabolismo , Pneumonia Pneumocócica/tratamento farmacológico , Pneumonia Pneumocócica/microbiologia , Streptococcus pneumoniae/patogenicidade , Tropolona/farmacologia , Tropolona/uso terapêuticoRESUMO
Macrolide antibiotics exert antiinflammatory effects; however, little is known regarding their immunomodulatory mechanisms. In this study, using 2 distinct mouse models of mucosal inflammatory disease (LPS-induced acute lung injury and ligature-induced periodontitis), we demonstrated that the antiinflammatory action of erythromycin (ERM) is mediated through upregulation of the secreted homeostatic protein developmental endothelial locus-1 (DEL-1). Consistent with the anti-neutrophil recruitment action of endothelial cell-derived DEL-1, ERM inhibited neutrophil infiltration in the lungs and the periodontium in a DEL-1-dependent manner. Whereas ERM (but not other antibiotics, such as josamycin and penicillin) protected against lethal pulmonary inflammation and inflammatory periodontal bone loss, these protective effects of ERM were abolished in Del1-deficient mice. By interacting with the growth hormone secretagogue receptor and activating JAK2 in human lung microvascular endothelial cells, ERM induced DEL-1 transcription that was mediated by MAPK p38 and was CCAAT/enhancer binding protein-ß dependent. Moreover, ERM reversed IL-17-induced inhibition of DEL-1 transcription, in a manner that was dependent not only on JAK2 but also on PI3K/AKT signaling. Because DEL-1 levels are severely reduced in inflammatory conditions and with aging, the ability of ERM to upregulate DEL-1 may lead to a novel approach for the treatment of inflammatory and aging-related diseases.
Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Proteínas de Ligação ao Cálcio/fisiologia , Moléculas de Adesão Celular/fisiologia , Eritromicina/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Periodontite/tratamento farmacológico , Pneumonia/tratamento farmacológico , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/patologia , Animais , Fármacos Gastrointestinais/farmacologia , Interleucina-17/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/imunologia , Neutrófilos/patologia , Periodontite/etiologia , Periodontite/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Pneumonia/etiologia , Pneumonia/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismoRESUMO
Hinokitiol, a component of the essential oil isolated from Cupressaceae, possesses antibacterial and antifungal activities and has been used in oral care products. In this study, the antibacterial activities of hinokitiol toward various oral, nasal and nasopharyngeal pathogenic bacteria, including Streptococcus mutans, Streptococcus sobrinus, Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, Prevotella intermedia, Fusobacterium nucleatum, methicillin-resistant and -susceptible Staphylococcus aureus, antibiotic-resistant and -susceptible Streptococcus pneumoniae, and Streptococcus pyogenes were examined. Growth of all these bacterial strains was significantly inhibited by hinokitiol, minimal inhibitory concentrations of hinokitiol against S. mutans, S. sobrinus, P. gingivalis, P. intermedia, A. actinomycetemcomitans, F. nucleatum, methicillin-resistant S. aureus, methicillin-susceptible S. aureus, antibiotic-resistant S. pneumoniae isolates, antibiotic-susceptible S. pneumoniae, and S. pyogenes being 0.3, 1.0, 1.0, 30, 0.5, 50, 50, 30, 0.3-1.0, 0.5, and 0.3 µg/mL, respectively. Additionally, with the exception of P. gingivalis, hinokitiol exerted bactericidal effects against all bacterial strains 1 hr after exposure. Hinokitiol did not display any significant cytotoxicity toward the human gingival epithelial cell line Ca9-22, pharyngeal epithelial cell line Detroit 562, human umbilical vein endothelial cells, or human gingival fibroblasts, with the exception of treatment with 500 µg/mL hinokitiol, which decreased numbers of viable Ca9-22 cells and gingival fibroblasts by 13% and 12%, respectively. These results suggest that hinokitiol exhibits antibacterial activity against a broad spectrum of pathogenic bacteria and has low cytotoxicity towards human epithelial cells.
Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Monoterpenos/farmacologia , Boca/microbiologia , Tropolona/análogos & derivados , Aggregatibacter actinomycetemcomitans/efeitos dos fármacos , Bactérias/classificação , Linhagem Celular Tumoral/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Fusobacterium nucleatum/efeitos dos fármacos , Humanos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Porphyromonas gingivalis/efeitos dos fármacos , Prevotella intermedia/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Streptococcus mutans/efeitos dos fármacos , Streptococcus pneumoniae/efeitos dos fármacos , Streptococcus pyogenes/efeitos dos fármacos , Streptococcus sobrinus/efeitos dos fármacos , Tropolona/farmacologiaRESUMO
Aggregatibacter actinomycetemcomitans is considered to be associated with periodontitis. Leukotoxin (LtxA), which destroys leukocytes in humans, is one of this bacterium's major virulence factors. Amounts of neutrophil elastase (NE), which is normally localized in the cytoplasm of neutrophils, are reportedly increased in the saliva of patients with periodontitis. However, the mechanism by which NE is released from human neutrophils and the role of NE in periodontitis is unclear. In the present study, it was hypothesized that LtxA induces NE release from human neutrophils, which subsequently causes the breakdown of periodontal tissues. LtxA-treatment did not induce significant cytotoxicity against human gingival epithelial cells (HGECs) or human gingival fibroblasts (HGFs). However, it did induce significant cytotoxicity against human neutrophils, leading to NE release. Furthermore, NE and the supernatant from LtxA-treated human neutrophils induced detachment and death of HGECs and HGFs, these effects being inhibited by administration of an NE inhibitor, sivelestat. The present results suggest that LtxA mediates human neutrophil lysis and induces the subsequent release of NE, which eventually results in detachment and death of HGECs and HGFs. Thus, LtxA-induced release of NE could cause breakdown of periodontal tissue and thereby exacerbate periodontitis.
Assuntos
Aggregatibacter actinomycetemcomitans/metabolismo , Células Epiteliais/patologia , Exotoxinas/metabolismo , Fibroblastos/patologia , Gengiva/microbiologia , Elastase de Leucócito/metabolismo , Neutrófilos/patologia , Periodontite/microbiologia , Aggregatibacter actinomycetemcomitans/patogenicidade , Morte Celular/fisiologia , Linhagem Celular , Células Epiteliais/microbiologia , Fibroblastos/microbiologia , Gengiva/citologia , Glicina/análogos & derivados , Glicina/farmacologia , Humanos , Elastase de Leucócito/antagonistas & inibidores , Neutrófilos/microbiologia , Sulfonamidas/farmacologia , Fatores de Virulência/metabolismoRESUMO
Vaccination is an effective strategy to prevent pneumococcal diseases. Currently, licensed vaccines include the pneumococcal polysaccharide vaccine (PPSV) and the pneumococcal conjugate vaccine (PCV), which target some of the most common of the 94 serotypes of S. pneumoniae based on their capsular composition. However, it has been reported that PPSV is not effective in children aged less than 2â¯years old and PCV induces serotype replacement, which means that the pneumococcal population has changed following widespread introduction of these vaccines, and the non-vaccine serotypes have increased in being the cause of invasive pneumococcal disease. Therefore, it is important that there is development of novel pneumococcal vaccines to either replace or complement current polysaccharide-based vaccines. Our previous study suggested that S. pneumoniae releases elongation factor Tu (EF-Tu) through autolysis followed by the induction of proinflammatory cytokines in macrophages via toll-like receptor 4, that may contribute to the development of pneumococcal diseases. In this study, we investigated the expression of EF-Tu in various S. pneumoniae strains and whether EF-Tu could be an antigen candidate for serotype-independent vaccine against pneumococcal infection. Western blotting and flow cytometry analysis revealed that EF-Tu is a common factor expressed on the surface of all pneumococcal strains tested, as well as intracellularly. In addition, we demonstrate that immunization with recombinant (r) EF-Tu induced the production of inflammatory cytokines and the IgG1 and IgG2a antibodies in mice, and increased the CD4+ T-cells proportion in splenocytes. We also reveal that anti-EF-Tu serum increased the phagocytic activity of mouse peritoneal macrophages against S. pneumoniae infection, independent of their serotypes. Finally, our results indicate that mice immunized with rEF-Tu were significantly and non-specifically protected against lethal challenges with S. pneumoniae serotypes (2 and 15A). Therefore, pneumococcal EF-Tu could be an antigen candidate for the serotype-independent vaccine against pneumococcal infection.
Assuntos
Anticorpos Antibacterianos/sangue , Fator Tu de Elongação de Peptídeos/genética , Fator Tu de Elongação de Peptídeos/imunologia , Infecções Pneumocócicas/prevenção & controle , Vacinas Pneumocócicas/imunologia , Animais , Antígenos de Bactérias/genética , Antígenos de Bactérias/imunologia , Citocinas/imunologia , Imunoglobulina G/sangue , Macrófagos/imunologia , Macrófagos/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Fagocitose , Infecções Pneumocócicas/imunologia , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/imunologia , Sorogrupo , Streptococcus pneumoniaeRESUMO
OBJECTIVE: Food-derived peptides have been reported to exhibit antibacterial activity against periodontal pathogenic bacteria. However, no effect has been shown on inflammation and bone resorption in periodontal pathology. The overall objective of the current study was to investigate how rice peptides influence biological defense mechanisms against periodontitis-induced inflammatory bone loss, and identify their novel functions as a potential anti-inflammatory drug. DESIGN: The expression of inflammatory and osteoclast-related molecules was examined in mouse macrophage-derived RAW 264.7 cell cultures using qPCR. Subsequently, the effect of these peptides on inflammatory bone loss in mouse periodontitis was examined using a mouse model of tooth ligation. Briefly, periodontal bone loss was induced for 7 days in mice by ligating the maxillary second molar and leaving the contralateral tooth un-ligated (baseline control). The mice were microinjected daily with the peptide in the gingiva until the day before euthanization. One week after the ligation, TRAP-positive multinucleated cells (MNCs) were enumerated from five random coronal sections of the ligated sites in each mouse. RESULTS: Rice peptides REP9 and REP11 significantly inhibited transcription activity of inflammatory and osteoclast-related molecules. Local treatment with the rice peptides, in mice subjected to ligature-induced periodontitis, inhibited inflammatory bone loss, explaining the decreased numbers of osteoclasts in bone tissue sections. CONCLUSION: Therefore, these data suggested that the rice peptides possess a protective effect against periodontitis.
Assuntos
Perda do Osso Alveolar/tratamento farmacológico , Antibacterianos/farmacologia , Endosperma/química , Oryza/química , Peptídeos/antagonistas & inibidores , Periodontite/tratamento farmacológico , Extratos Vegetais/farmacologia , Perda do Osso Alveolar/diagnóstico por imagem , Perda do Osso Alveolar/patologia , Animais , Antibacterianos/administração & dosagem , Antibacterianos/uso terapêutico , Reabsorção Óssea/diagnóstico por imagem , Reabsorção Óssea/tratamento farmacológico , Reabsorção Óssea/patologia , Sobrevivência Celular/efeitos dos fármacos , Citocinas/metabolismo , Modelos Animais de Doenças , Gengiva/efeitos dos fármacos , Inflamação , Ligadura , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Dente Molar , Osteoclastos/efeitos dos fármacos , Peptídeos/administração & dosagem , Peptídeos/uso terapêutico , Periodontite/diagnóstico por imagem , Periodontite/patologia , Extratos Vegetais/uso terapêutico , Proteínas de Plantas/administração & dosagem , Proteínas de Plantas/antagonistas & inibidores , Proteínas de Plantas/uso terapêutico , Células RAW 264.7 , Microtomografia por Raio-X/métodosRESUMO
Streptococcus pneumoniae is a leading cause of bacterial pneumonia. Our previous study suggested that S. pneumoniae autolysis-dependently releases intracellular pneumolysin, which subsequently leads to lung injury. In this study, we hypothesized that pneumococcal autolysis induces the leakage of additional intracellular molecules that could increase the pathogenicity of S. pneumoniae. Liquid chromatography tandem-mass spectrometry analysis identified that chaperone protein DnaK, elongation factor Tu (EF-Tu), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were released with pneumococcal DNA by autolysis. We demonstrated that recombinant (r) DnaK, rEF-Tu, and rGAPDH induced significantly higher levels of interleukin-6 and tumor necrosis factor production in peritoneal macrophages and THP-1-derived macrophage-like cells via toll-like receptor 4. Furthermore, the DNA-binding activity of these proteins was confirmed by surface plasmon resonance assay. We demonstrated that pneumococcal DnaK, EF-Tu, and GAPDH induced the production of proinflammatory cytokines in macrophages, and might cause host tissue damage and affect the development of pneumococcal diseases.