Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Lung Cancer ; 144: 20-29, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32353632

RESUMO

OBJECTIVES: Somatic chromosomal rearrangements resulting in ALK fusion oncogenes are observed in 3-7 % of lung adenocarcinomas. ALK tyrosine kinase inhibitors (ALKi) induce initially response, however, various resistance mechanisms limit their efficacy. Novel therapeutic approaches are of utmost importance to tailor these targeted therapies. MATERIALS AND METHODS: A synchronous ALK-rearranged and mutated lung cancer cell line pair was established from malignant pleural effusion (PF240-PE) and carcinosis (PF240-PC) at time of ALKi resistance. Immunohistochemistry, FISH and sequencing were performed in pre- and post-treatment tumors and in both cell lines. Differentiation markers were measured by immunoblot. Viability was tested following treatment with ALKi and/or a pan-HDAC inhibitor. Additionally, a novel treatment-naïve ALK-rearranged cell line served as control. In vivo tumorigenicity was evaluated in subcutaneous xenografts. RESULTS: Two distinct resistance mutations were identified in different carcinosis tissues at time of resistance, the previously described resistance mutation L1152R and the hitherto uncharacterized E1161K. Strikingly, PF240-PC cells carried E1161K and PF240-PE cells harbored L1152R. Immunohistochemistry and immunoblot identified epithelial-to-mesenchymal transition markers upregulated following ALKi resistance development both in carcinosis tissues and cell lines. While both lines grew as xenografts, they differed in morphology, migration, in vivo growth and sensitivity to ALKi in vitro. Strikingly, the combination of ALKi with SAHA yielded strong synergism. CONCLUSION: Using a patient-derived ALKi resistant lung cancer model we demonstrated the synergism of HDAC and ALK inhibition. Furthermore, our findings provide strong evidence for intratumoral heterogeneity under targeted therapy and highlight the importance of site-specific mutational analysis.


Assuntos
Adenocarcinoma de Pulmão , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/genética , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Mutação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA