Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biomed Sci ; 29(1): 25, 2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35414069

RESUMO

BACKGROUND: Abdominal aortic aneurysm (AAA) is a relatively common and often fatal condition. A major histopathological hallmark of AAA is the severe degeneration of aortic media with loss of vascular smooth muscle cells (VSMCs), which are the main source of extracellular matrix (ECM) proteins. VSMCs and ECM homeostasis are essential in maintaining structural integrity of the aorta. Cysteine-rich protein 2 (CRP2) is a VSMC-expressed protein; however, the role of CRP2 in AAA formation is unclear. METHODS: To investigate the function of CRP2 in AAA formation, mice deficient in Apoe (Apoe-/-) or both CRP2 (gene name Csrp2) and Apoe (Csrp2-/-Apoe-/-) were subjected to an angiotensin II (Ang II) infusion model of AAA formation. Aortas were harvested at different time points and histological analysis was performed. Primary VSMCs were generated from Apoe-/- and Csrp2-/-Apoe-/- mouse aortas for in vitro mechanistic studies. RESULTS: Loss of CRP2 attenuated Ang II-induced AAA incidence and severity, accompanied by preserved smooth muscle α-actin expression and reduced elastin degradation, matrix metalloproteinase 2 (MMP2) activity, deposition of collagen, particularly collagen III (Col III), aortic tensile strength, and blood pressure. CRP2 deficiency decreased the baseline MMP2 and Col III expression in VSMCs and mitigated Ang II-induced increases of MMP2 and Col III via blunting Erk1/2 signaling. Rescue experiments were performed by reintroducing CRP2 into Csrp2-/-Apoe-/- VSMCs restored Ang II-induced Erk1/2 activation, MMP2 expression and activity, and Col III levels. CONCLUSIONS: Our results indicate that in response to Ang II stimulation, CRP2 deficiency maintains aortic VSMC density, ECM homeostasis, and structural integrity through Erk1/2-Col III and MMP2 axis and reduces AAA formation. Thus, targeting CRP2 provides a potential therapeutic strategy for AAA.


Assuntos
Angiotensina II , Aneurisma da Aorta Abdominal , Angiotensina II/efeitos adversos , Angiotensina II/metabolismo , Animais , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/genética , Apolipoproteínas E/metabolismo , Colágeno/efeitos adversos , Colágeno/metabolismo , Cisteína , Modelos Animais de Doenças , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo
2.
Aging (Albany NY) ; 11(19): 8604-8622, 2019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31596731

RESUMO

Cardiovascular diseases remain the leading cause of morbidity and mortality worldwide, particularly among older adults. Despite the advent of medical technology, restenosis is still an issue after interventional procedures. Tryptophan metabolite 5-methoxytryptophan (5-MTP) has recently been shown to protect against systemic inflammatory responses. This study aimed to investigate the function and mechanisms of 5-MTP in interventional procedure-induced restenosis. We found that after mouse femoral artery denudation with a guide wire, 5-MTP accelerated recovery of endothelium in the denuded area and reduced vascular leakage and intimal thickening. 5-MTP increased endothelial cell proliferation in the denuded arteries and rescued TNF-α-reduced endothelial cell proliferation and migration, likely via maintaining vascular endothelial growth factor receptor 2 activation. In contrast, 5-MTP preserved differentiated phenotype of medial vascular smooth muscle cells (VSMCs) and decreased VSMC proliferation and migration. Furthermore, 5-MTP maintained expression levels of critical transcription factors for VSMC marker gene expressions via attenuated activation of p38 MAPK and NFκB-p65. Our findings uncover a novel protective mechanism of 5-MTP in restenosis. In response to denudation injury, 5-MTP attenuates intimal hyperplasia via concerted but opposing actions on endothelial cells and VSMCs. Taken together, our results suggest that 5-MTP is a valuable therapeutic target for arterial injury-induced restenosis.


Assuntos
Reestenose Coronária , Endotélio Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Triptofano/análogos & derivados , Animais , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Reestenose Coronária/metabolismo , Reestenose Coronária/prevenção & controle , Camundongos , Fatores de Proteção , Triptofano/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
3.
Sci Rep ; 6: 25374, 2016 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-27146795

RESUMO

5-Methoxytryptophan (5-MTP), a 5-methoxyindole metabolite of tryptophan metabolism, was recently shown to suppress inflammatory mediator-induced cancer cell proliferation and migration. However, the role of 5-MTP in vascular disease is unknown. In this study, we investigated whether 5-MTP protects against vascular remodeling following arterial injury. Measurements of serum 5-MTP levels in healthy subjects and patients with coronary artery disease (CAD) showed that serum 5-MTP concentrations were inversely correlated with CAD. To test the role of 5-MTP in occlusive vascular disease, we subjected mice to a carotid artery ligation model of neointima formation and treated mice with vehicle or 5-MTP. Compared with vehicle-treated mice, 5-MTP significantly reduced intimal thickening by 40% 4 weeks after ligation. BrdU incorporation assays revealed that 5-MTP significantly reduced VSMC proliferation both in vivo and in vitro. Furthermore, 5-MTP reduced endothelial loss and detachment, ICAM-1 and VCAM-1 expressions, and inflammatory cell infiltration in the ligated arterial wall, suggesting attenuation of endothelial dysfunction. Signaling pathway analysis indicated that 5-MTP mediated its effects predominantly via suppressing p38 MAPK signaling in endothelial and VSMCs. Our data demonstrate a novel vascular protective function of 5-MTP against arterial injury-induced intimal hyperplasia. 5-MTP might be a therapeutic target for preventing and/or treating vascular remodeling.


Assuntos
Artérias/lesões , Doença da Artéria Coronariana/sangue , Músculo Liso Vascular/efeitos dos fármacos , Neointima/tratamento farmacológico , Triptofano/análogos & derivados , Lesões do Sistema Vascular/tratamento farmacológico , Idoso , Animais , Células Cultivadas , Doença da Artéria Coronariana/metabolismo , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Camundongos , Pessoa de Meia-Idade , Músculo Liso Vascular/citologia , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Triptofano/administração & dosagem , Triptofano/sangue , Triptofano/farmacologia , Lesões do Sistema Vascular/metabolismo
4.
Mol Biol Rep ; 41(11): 7033-41, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25034893

RESUMO

Vascular smooth muscle cells (VSMCs) of the arterial wall normally display a differentiated and contractile phenotype. In response to arterial injury, VSMCs switch to a synthetic phenotype, contributing to vascular remodeling. Cysteine-rich protein 2 (CRP2) is a cytoskeletal protein expressed in VSMCs and blunts VSMC migration in part by sequestering the scaffolding protein p130Cas at focal adhesions. CRP2 deficiency in mice increases neointima formation following arterial injury. The goal of this study was to use Csrp2 promoter-lacZ transgenic mice to analyze CRP2 expression during VSMC phenotypic modulation. In a neointima formation model after carotid artery cessation of blood flow, lacZ reporter activity and smooth muscle (SM) α-actin expression in the media were rapidly downregulated 4 days after carotid ligation. Fourteen days after ligation, there was a high level expression of both Csrp2 promoter activity and SM α-actin protein expression in neointimal cells. In atherosclerosis prone mice fed an atherogenic diet, Csrp2 promoter activity was detected within complex atherosclerotic lesions. Interestingly, Csrp2 promoter activity was also present in the fibrous caps of complicated atherosclerotic lesions, indicating that CRP2 might contribute to plaque stability. These findings support the concept that CRP2 contributes to the phenotypic modulation of VSMCs during vascular disease. Modulating transcription to increase CRP2 expression during vascular injury might attenuate vascular remodeling. In addition, increased CRP2 expression at the fibrous caps of advanced lesions might also serve to protect atherosclerotic plaques from rupture.


Assuntos
Aterosclerose/metabolismo , Proteínas de Transporte/metabolismo , Regulação da Expressão Gênica/fisiologia , Proteínas com Domínio LIM/metabolismo , Músculo Liso Vascular/metabolismo , Lesões do Sistema Vascular/metabolismo , Actinas/metabolismo , Animais , Artérias Carótidas/cirurgia , Proteínas de Transporte/genética , Movimento Celular/fisiologia , Primers do DNA/genética , Galactosídeos , Regulação da Expressão Gênica/genética , Genótipo , Técnicas Histológicas , Imuno-Histoquímica , Indóis , Proteínas com Domínio LIM/genética , Ligadura , Masculino , Camundongos , Camundongos Transgênicos , Neointima/fisiopatologia , Reação em Cadeia da Polimerase
5.
Cardiovasc Res ; 100(3): 461-71, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-23975851

RESUMO

AIMS: Cysteine-rich protein (CRP) 2, a member of the LIM-only CRP family that contains two LIM domains, is expressed in vascular smooth muscle cells (VSMCs) of blood vessels and functions to repress VSMC migration and vascular remodelling. The goal of this study was to define the molecular mechanisms by which CRP2 regulates VSMC migration. METHODS AND RESULTS: Transfection of VSMCs with CRP2-EGFP constructs revealed that CRP2 associated with the actin cytoskeleton. In response to chemoattractant stimulation, Csrp2 (mouse CRP2 gene symbol)-deficient (Csrp2(-/-)) VSMCs exhibited increased lamellipodia formation. Re-introduction of CRP2 abrogated the enhanced lamellipodia formation and migration of Csrp2(-/-) VSMCs following chemoattractant stimulation. Mammalian 2-hybrid and co-immunoprecipitation assays demonstrated that CRP2 interacts with p130Cas, a scaffold protein important for lamellipodia formation and cell motility. Immunofluorescence staining showed that CRP2 colocalized with phospho-p130Cas at focal adhesions (FAs)/terminal ends of stress fibres in non-migrating cells. Interestingly, in migrating cells phospho-p130Cas localized to the leading edge of lamellipodia and FAs, whereas CRP2 was restricted to FAs and stress fibres. Furthermore, we demonstrated that p130Cas expression and phosphorylation promote neointima formation following arterial injury. CONCLUSION: These studies demonstrate that CRP2 sequesters p130Cas at FAs, thereby reducing lamellipodia formation and blunting VSMC migration.


Assuntos
Lesões das Artérias Carótidas/metabolismo , Proteínas de Transporte/metabolismo , Movimento Celular , Proteína Substrato Associada a Crk/metabolismo , Proteínas com Domínio LIM/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Animais , Lesões das Artérias Carótidas/genética , Lesões das Artérias Carótidas/patologia , Artéria Carótida Primitiva/metabolismo , Artéria Carótida Primitiva/patologia , Proteínas de Transporte/genética , Células Cultivadas , Proteína Substrato Associada a Crk/genética , Modelos Animais de Doenças , Adesões Focais/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas com Domínio LIM/deficiência , Proteínas com Domínio LIM/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/lesões , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Neointima , Fosforilação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico , Pseudópodes/metabolismo , Interferência de RNA , Proteínas Recombinantes de Fusão/metabolismo , Fibras de Estresse/metabolismo , Fatores de Tempo , Transfecção
6.
J Pathol ; 222(3): 238-48, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20814903

RESUMO

Autosomal dominant polycystic kidney disease (ADPKD) is one of the most common life-threatening inherited diseases, and the PKD1 gene is responsible for most cases of this disease. Previous efforts to establish a mouse model that recapitulates the phenotypic characteristics of ADPKD, which have used conventional or conditional knockout of the mouse orthologue Pkd1, have been unsuccessful or unreliable. In a previous study, we described the generation of a novel Pkd1 hypomorphic allele, in which Pkd1 expression was significantly reduced but not totally blocked. These Pkd1 homozygous mutant mice rapidly developed renal cystic disease, supporting the hypothesis that 'haploinsufficiency' explains development of the ADPKD phenotype. In the present study, we further investigated the Pkd1 haploinsufficiency effect by generating Pkd1 knockdown transgenic mice with co-cistronic expression of two miRNA hairpins specific to Pkd1 transcript and an Emerald GFP reporter driven by a human ubiquitin B promoter. Two transgenic lines which had ∼60-70% reduction of Pkd1 expression developed severe renal cystic disease at a rate similar to that of human ADPKD. These results further support the haploinsufficiency hypothesis, and suggest that the onset and progression of the renal cystic diseases are correlated with the level of Pkd1 expression. The two novel mutant lines of mice appear to be ideal models for the study of ADPKD.


Assuntos
Rim Policístico Autossômico Dominante/genética , Canais de Cátion TRPP/genética , Animais , Apoptose , Proliferação de Células , Modelos Animais de Doenças , Progressão da Doença , Células Epiteliais/patologia , Técnicas de Silenciamento de Genes/métodos , Túbulos Renais/patologia , Camundongos , Camundongos Transgênicos , MicroRNAs/genética , Rim Policístico Autossômico Dominante/metabolismo , Rim Policístico Autossômico Dominante/patologia , Canais de Cátion TRPP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA