Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Mol Ther Methods Clin Dev ; 32(1): 101169, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38187094

RESUMO

DNA vaccines for infectious diseases and cancer have been explored for years. To date, only one DNA vaccine (ZyCoV-D) has been authorized for emergency use in India. DNA vaccines are inexpensive and long-term thermostable, however, limited by the low efficiency of intracellular delivery. The recent success of mRNA/lipid nanoparticle (LNP) technology in the coronavirus disease 2019 (COVID-19) pandemic has opened a new application for nucleic acid-based vaccines. Here, we report that plasmid encoding a trimeric spike protein with LNP delivery (pTS/LNP), similar to those in Moderna's COVID-19 vaccine, induced more effective humoral responses than naked pTS or pTS delivered via electroporation. Compared with TSmRNA/LNP, pTS/LNP immunization induced a comparable level of neutralizing antibody titers and significant T helper 1-biased immunity in mice; it also prolonged the maintenance of higher antigen-specific IgG and neutralizing antibody titers in hamsters. Importantly, pTS/LNP immunization exhibits enhanced cross-neutralizing activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants and protects hamsters from the challenge of SARS-CoV-2 (Wuhan strain and the Omicron BA.1 variant). This study indicates that pDNA/LNPs as a promising platform could be a next-generation vaccine technology.

2.
Colloids Surf A Physicochem Eng Asp ; 608: 125564, 2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-32929307

RESUMO

Aluminum-containing salts are commonly used as antacids and vaccine adjuvants; however, key features of functional activities remain unclear. Here, we characterized vaccine formulations based on aluminum phosphate and aluminum hydroxide and investigated the respective modes of action linking physicochemical properties and catalytic ability. TEM microscopy indicated that aluminum phosphate gel solutions are amorphous, whereas aluminum hydroxide gel solutions have a crystalline structure consistent with boehmite. At very low BSA concentrations, 100 % adsorption of the protein on aluminum hydroxide could be achieved. As the protein concentration increased, the amount of adsorbed BSA decreased as fewer vacant sites were available on the surface of the adjuvants. Notably, less than 20 % adsorption was observed in aluminum phosphate. The protein adsorption profiles should confront the requirements for vaccine immunoavailability. In terms of catalytic ability, the prepared aluminum salts were tested for their ability to drive the amphiphilic engineering of oligo(lactic acid) (OLA) onto methoxy poly(ethylene glycol). It was concluded that aluminum hydroxide, rather than aluminum phosphate, is suitable to be a vaccine adjuvant according to the morphology and antigen adsorption efficiency results; on the other hand, aluminum phosphate may be a more efficient catalyst for the synthesis of polymeric emulsifiers than aluminum hydroxide. The results provide critical mechanistic insight into aluminum-containing salts in vaccine formulations.

3.
J Immunother Cancer ; 8(2)2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33037116

RESUMO

BACKGROUND: Emulsion adjuvants are a potent tool for effective vaccination; however, the size matters on mucosal signatures and the mechanism of action following intranasal vaccination remains unclear. Here, we launch a mechanistic study to address how mucosal membrane interacts with nanoemulsion of a well-defined size at cellular level and to elucidate the impact of size on tumor-associated antigen therapy. METHODS: The squalene-based emulsified particles at the submicron/nanoscale could be elaborated by homogenization/extrusion. The mucosal signatures following intranasal delivery in mice were evaluated by combining whole-mouse genome microarray and immunohistochemical analysis. The immunological signatures were tested by assessing their ability to influence the transportation of a model antigen ovalbumin (OVA) across nasal mucosal membranes and drive cellular immunity in vivo. Finally, the cancer immunotherapeutic efficacy is monitored by assessing tumor-associated antigen models consisting of OVA protein and tumor cells expressing OVA epitope. RESULTS: Uniform structures with ~200 nm in size induce the emergence of membranous epithelial cells and natural killer cells in nasal mucosal tissues, facilitate the delivery of protein antigen across the nasal mucosal membrane and drive broad-spectrum antigen-specific T-cell immunity in nasal mucosal tissues as well as in the spleen. Further, intranasal vaccination of the nanoemulsion could assist the antigen to generate potent antigen-specific CD8+ cytotoxic T-lymphocyte response. When combined with immunotherapeutic models, such an effective antigen-specific cytotoxic activity allowed the tumor-bearing mice to reach up to 50% survival 40 days after tumor inoculation; moreover, the optimal formulation significantly attenuated lung metastasis. CONCLUSIONS: In the absence of any immunostimulator, only 0.1% content of squalene-based nanoemulsion could rephrase the mucosal signatures following intranasal vaccination and induce broad-spectrum antigen-specific cellular immunity, thereby improving the efficacy of tumor-associated antigen therapy against in situ and metastatic tumors. These results provide critical mechanistic insights into the adjuvant activity of nanoemulsion and give directions for the design and optimization of mucosal delivery for vaccine and immunotherapy.


Assuntos
Adjuvantes Imunológicos/uso terapêutico , Administração Intranasal/métodos , Imunomodulação/imunologia , Imunoterapia/métodos , Mucosa/imunologia , Nanopartículas/química , Vacinação/métodos , Adjuvantes Imunológicos/farmacologia , Animais , Feminino , Humanos , Camundongos
4.
FASEB J ; 33(12): 14653-14667, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31693867

RESUMO

Dual-specificity phosphatases (DUSPs) regulate the activity of various downstream kinases through serine or threonine or tyrosine dephosphorylation. Loss of function and aberrant expression of DUSPs has been implicated in cancer progression and poor survival, yet the function of DUSP22 in prostate cancer (PCa) cells is not clear. Gene Expression Omnibus and cBioPortal microarray database analyses showed that DUSP22 expression was lower in PCa tissues than normal prostate tissues, and altered DUSP22 expression was associated with shorter progression-free and disease-free survival of patients with PCa. Exogenous DUSP22 expression in LNCaP, PC3, and C4-2B PCa cells inhibited cellular proliferation and colony formation, supporting a growth inhibitory role for DUSP22 in PCa cells. DUSP22 expression significantly attenuated epidermal growth factor (EGF) receptor (EGFR) and its downstream ERK1/2 signaling by dephosphorylation. However, DUSP22 failed to suppress the growth of CWR22Rv1 and DU145 cells with elevated phosphorylated (p-)ERK1/2 levels. A serine-to-alanine mutation at position 58, a potential ERK1/2-targeted phosphorylation site in DUSP22, was sufficient to suppress growth of CWR22Rv1 cells with elevated p-ERK1/2 levels, suggesting a mutually antagonistic relationship between DUSP22 and ERK1/2 dependent on phosphorylation status. We showed that DUSP22 can suppress prostate-specific antigen gene expression through phosphatase-dependent pathways, suggesting that DUSP22 is an important regulator of the androgen receptor (AR) in PCa cells. Mechanistically, DUSP22 can interact with AR as a regulatory partner and interfere with EGF-induced AR phosphorylation at Tyr534, suggesting that DUSP22 serves as a crucial suppressor of both EGFR and AR-dependent signaling in PCa cells via dephosphorylation. Our findings indicate that loss of function of DUSP22 in PCa cells leads to aberrant activation of both EGFR-ERKs and AR signaling and ultimately progression of PCa, supporting the potential for novel therapeutic design of harnessing DUSP22 in the treatment of PCa.-Lin, H.-P., Ho, H.-M., Chang, C.-W., Yeh, S.-D., Su, Y.-W., Tan, T.-H., Lin, W.-J. DUSP22 suppresses prostate cancer proliferation by targeting the EGFR-AR axis.


Assuntos
Fosfatases de Especificidade Dupla/metabolismo , Receptores ErbB/metabolismo , Fosfatases da Proteína Quinase Ativada por Mitógeno/metabolismo , Neoplasias da Próstata/metabolismo , Receptores Androgênicos/metabolismo , Transdução de Sinais , Animais , Linhagem Celular Tumoral , Proliferação de Células , Fosfatases de Especificidade Dupla/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosfatases da Proteína Quinase Ativada por Mitógeno/genética , Fosforilação , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Ligação Proteica
5.
Oncotarget ; 7(7): 8389-98, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26701731

RESUMO

Prostate-specific antigen (PSA) is regarded as the most sensitive biomarker for prostate cancer. Although androgen/androgen receptor (AR) signaling promotes prostate cancer progression, suppression of AR signaling induces chemokine (CC motif) ligand 2 (CCL2), which enables prostate cancer cells to gain metastatic potential. AR-controlled PSA alone may be an unreliable biomarker for patients receiving androgen deprivation therapy. Therefore, we investigated the validity of CCL2 as a complementary biomarker to PSA for prostate cancer. Our in vitro approach of enriching for prostate cancer cells with higher migration potential showed that CCL2 activated cellular migration. Importantly, we found that CCL2 levels were significantly different between men (n = 379) with and without prostate cancer. Patients with CCL2 ≥ 320 pg/mL had worse overall survival and prostate cancer -specific survival than those with CCL2 < 320 pg/mL. A novel risk classification was developed according to the risk factors CCL2 ≥ 320 pg/mL and PSA ≥ 100 ng/mL, and scores of 2, 1, and 0 were defined as poor, intermediate, and good risk, respectively, and clearly distinguished patient outcomes. CCL2 may serve as a novel biomarker for prostate cancer. The novel risk classification based on combining CCL2 and PSA is more reliable than using either alone.


Assuntos
Biomarcadores Tumorais/sangue , Quimiocina CCL2/sangue , Neoplasias da Próstata/patologia , Idoso , Idoso de 80 Anos ou mais , Apoptose , Biomarcadores Tumorais/genética , Movimento Celular , Proliferação de Células , Quimiocina CCL2/genética , Terapia Combinada , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Estadiamento de Neoplasias , Prognóstico , Neoplasias da Próstata/sangue , Neoplasias da Próstata/terapia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Taxa de Sobrevida , Células Tumorais Cultivadas
6.
Electron. j. biotechnol ; 15(4): 9-9, July 2012. ilus, tab
Artigo em Inglês | LILACS | ID: lil-646959

RESUMO

In the present study, a novel plant transformation system for Doritaenopsis and Phalaenopsis has been developed. The pollen-mediated activation tagging system was established by artificial pollination. The pollens, co-cultured with Agrobacterium tumefaciens strain EHA105 harbouring an activation tagging vector (pTAG-8), were used for pollination. In order to optimize the transformation efficiency, several factors (concentration of A. tumefaciens, concentration of acetosyringone during co-cultivation and the duration of co-cultivation) known to influence Agrobacterium-mediated DNA transfer were examined. A concentration of 0.5-1 x 10(8) CFU/ml for A. tumefaciens, 0.1 mM acetosyringone, and 6 hrs of co-culture period were found to be the optimal condition for high transformation efficiency. Integration of T-DNA into the genome of putative transgenic plants was confirmed by PCR and DNA blot analyses. Single copy of the transgene was observed in all transgenic plants analyzed. Most of the transgenic plants had a morphologically normal phenotype and the overall capsule formation efficiency was similar to control plant. Our results showed a new approach of genetic transformation in orchids and this method can be employed for genetic improvement of the orchids.


Assuntos
Agrobacterium tumefaciens , Orchidaceae/genética , Polinização , Elementos de DNA Transponíveis/genética , Reação em Cadeia da Polimerase , Transformação Genética
7.
J Virol Methods ; 173(2): 189-95, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21315763

RESUMO

A live enterovirus 71 (EV71) isolate designated, EV71/E59, with genotype B4 produced in Vero cells and purified over a sucrose gradient was used as the immunogen to generate EV71-specific murine monoclonal antibodies. Four hybridoma clones derived from the fusion of splenocytes of EV71/E59-preimmunized BALB/c (H-2(d)) mice and the NS-1 myeloma cells that exhibit stable growth were selected for detailed characterization. The proof that the hybridomas produced are indeed true independent clones was based on the obervations that they expressed different complementarity-determining regions (CDRs) in their κ light chain genes. Purified ascitic fluids produced by the individual clones reacted against the viral capsid protein, VP1, in Western blot; and recognized distinct sites of a common epitope localized at the C-terminal half of VP1. Each of the monoclonal antibodies exhibited potent neutralizing activities against the immunizing virus strain, as well as two other isolates namely, N0781-TW-01, and N2838, of subgenogroups B4 and B5, respectively, that were found commonly in recent outbreaks in Taiwan. It was also observed the monoclonal antibodies acted cooperatively in neutralizing the EV71/E59 virus.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Animais , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Neutralizantes/isolamento & purificação , Chlorocebus aethiops , Reações Cruzadas , Enterovirus Humano B/imunologia , Infecções por Enterovirus/virologia , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Testes de Neutralização , Taiwan , Células Vero
8.
J Biol Chem ; 285(1): 30-42, 2010 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19889638

RESUMO

Interstitial flow in and around bone tissue is oscillatory in nature and affects the mechanical microenvironment for bone cell growth and formation. We investigated the role of oscillatory shear stress (OSS) in modulating the proliferation of human osteoblast-like MG63 cells and its underlying mechanisms. Application of OSS (0.5 +/- 4 dynes/cm(2)) to MG63 cells induced sustained activation of phosphatidylinositol 3-kinase (PI3K)/Akt/mTOR/p70S6K (p70S6 kinase) signaling cascades and hence cell proliferation, which was accompanied by increased expression of cyclins A and D1, cyclin-dependent protein kinases-2, -4, and -6, and bone formation-related genes (c-fos, Egr-1, and Cox-2) and decreased expression of p21(CIP1) and p27(KIP1). OSS-induced activation of PI3K/Akt/mTOR/p70S6K and cell proliferation were inhibited by specific antibodies or small interference RNAs of alpha(v)beta(3) and beta(1) integrins and by dominant-negative mutants of Shc (Shc-SH2) and focal adhesion kinase (FAK) (FAK(F397Y)). Co-immunoprecipitation assay showed that OSS induces sustained increases in association of Shc and FAK with alpha(v)beta(3) and beta(1) integrins and PI3K subunit p85, which were abolished by transfecting the cells with FAK(F397Y) or Shc-SH2. OSS also induced sustained activation of ERK, which was inhibited by the specific PI3K inhibitor LY294002 and was required for OSS-induced activation of mTOR/p70S6K and proliferation in MG63 cells. Our findings provide insights into the mechanisms by which OSS induces osteoblast-like cell proliferation through activation of alpha(v)beta(3) and beta(1) integrins and synergistic interactions of FAK and Shc with PI3K, leading to the modulation of downstream ERK and Akt/mTOR/p70S6K pathways.


Assuntos
Integrina alfaVbeta3/metabolismo , Integrina beta1/metabolismo , Osteoblastos/citologia , Osteoblastos/enzimologia , Reologia , Proteínas Adaptadoras da Sinalização Shc/metabolismo , Transdução de Sinais , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Proliferação de Células , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Ativação Enzimática , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Regulação da Expressão Gênica , Humanos , Complexos Multiproteicos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteínas Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src , Estresse Mecânico , Serina-Treonina Quinases TOR
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA