Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Small ; 20(8): e2304082, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37767608

RESUMO

Bioenergetic deficits are known to be significant contributors to neurodegenerative diseases. Nevertheless, identifying safe and effective means to address intracellular bioenergetic deficits remains a significant challenge. This work provides mechanistic insights into the energy metabolism-regulating function of colloidal Au nanocrystals, referred to as CNM-Au8, that are synthesized electrochemically in the absence of surface-capping organic ligands. When neurons are subjected to excitotoxic stressors or toxic peptides, treatment of neurons with CNM-Au8 results in dose-dependent neuronal survival and neurite network preservation across multiple neuronal subtypes. CNM-Au8 efficiently catalyzes the conversion of an energetic cofactor, nicotinamide adenine dinucleotide hydride (NADH), into its oxidized counterpart (NAD+ ), which promotes bioenergy production by regulating the intracellular level of adenosine triphosphate. Detailed kinetic measurements reveal that CNM-Au8-catalyzed NADH oxidation obeys Michaelis-Menten kinetics and exhibits pH-dependent kinetic profiles. Photoexcited charge carriers and photothermal effect, which result from optical excitations and decay of the plasmonic electron oscillations or the interband electronic transitions in CNM-Au8, are further harnessed as unique leverages to modulate reaction kinetics. As exemplified by this work, Au nanocrystals with deliberately tailored structures and surfactant-free clean surfaces hold great promise for developing next-generation therapeutic agents for neurodegenerative diseases.


Assuntos
NAD , Doenças Neurodegenerativas , Humanos , NAD/química , Ouro/química , Oxirredução
2.
Eur J Med Genet ; 62(1): 15-20, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29729439

RESUMO

Copy number variants (CNV)s involving KANK1 are generally classified as variants of unknown significance. Several clinical case reports suggest that the loss of KANK1 on chromosome 9p24.3 has potential impact on neurodevelopment. These case studies are inconsistent in terms of patient phenotype and suspected pattern of inheritance. Further complexities arise because these published reports utilize a variety of genetic testing platforms with varying resolution of the 9p region; this ultimately causes uncertainty about the impacted genomic coordinates and gene transcripts. Beyond these case reports, large case-control studies and publicly available databases statistically cast doubt as to whether variants of KANK1 are clinically significant. However, these large data sources are neither easily extracted nor uniformly applied to clinical interpretation. In this report we provide an updated analysis of the data on this locus and its potential clinical relevance. This is based on a review of the literature as well as 28 patients who harbor a single copy number variant involving KANK1 with or without DOCK8 (27 of whom are not published previously) identified by our clinical laboratory using an ultra-high resolution chromosomal microarray analysis. We note that 13 of 16 patients have a documented diagnosis of autism spectrum disorder (ASD) while only two, with documented perinatal complications, have a documented diagnosis of cerebral palsy (CP). A careful review of the CNVs suggests a transcript-specific effect. After evaluation of our case series and reconsideration of the literature, we propose that KANK1 aberrations do not frequently cause CP but cannot exclude that they represent a risk factor for ASD, especially when the coding region of the shorter, alternate KANK1 transcript (termed "transcript 4" in the UCSC Genome Browser) is impacted.


Assuntos
Transtorno do Espectro Autista/genética , Paralisia Cerebral/genética , Variações do Número de Cópias de DNA , Proteínas Supressoras de Tumor/genética , Proteínas Adaptadoras de Transdução de Sinal , Transtorno do Espectro Autista/patologia , Paralisia Cerebral/patologia , Proteínas do Citoesqueleto , Estudo de Associação Genômica Ampla , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA