Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
EMBO Mol Med ; 16(4): 784-804, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38514793

RESUMO

Cytokine release syndrome (CRS) is a significant side-effect of conventional chimeric antigen receptor (CAR) T-cell therapy. To facilitate patient accessibility, short-term (st) CAR T cells, which are administered to patients only 24 h after vector exposure, are in focus of current investigations. Their impact on the incidence and severity of CRS has been poorly explored. Here, we evaluated CD19-specific stCAR T cells in preclinical models. In co-culture with tumor cells and monocytes, stCAR T cells exhibited anti-tumoral activity and potent release of CRS-related cytokines (IL-6, IFN-γ, TNF-α, GM-CSF, IL-2, IL-10). When administered to NSG-SGM3 mice, stCAR T cells, but not conventional CAR T cells, induced severe acute adverse events within 24 h, including hypothermia and weight loss, as well as high body scores, independent of the presence of tumor target cells. Human (IFN-γ, TNF-α, IL-2, IL-10) and murine (MCP-1, IL-6, G-CSF) cytokines, typical for severe CRS, were systemically elevated. Our data highlight potential safety risks of rapidly manufactured CAR T cells and suggest NSG-SGM3 mice as sensitive model for their preclinical safety evaluation.


Assuntos
Síndrome da Liberação de Citocina , Neoplasias , Humanos , Animais , Camundongos , Interleucina-10 , Interleucina-6 , Fator de Necrose Tumoral alfa , Interleucina-2 , Citocinas , Imunoterapia Adotiva , Linfócitos T
2.
Adv Sci (Weinh) ; 10(35): e2302992, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37904721

RESUMO

Lentiviral vectors (LV) have become the dominant tool for stable gene transfer into lymphocytes including chimeric antigen receptor (CAR) gene delivery to T cells, a major breakthrough in cancer therapy. Yet, room for improvement remains, especially for the latest LV generations delivering genes selectively into T cell subtypes, a key requirement for in vivo CAR T cell generation. Toward improving gene transfer rates with these vectors, whole transcriptome analyses on human T lymphocytes are conducted after exposure to CAR-encoding conventional vectors (VSV-LV) and vectors targeted to CD8+ (CD8-LV) or CD4+ T cells (CD4-LV). Genes related to quiescence and antiviral restriction are found to be upregulated in CAR-negative cells exposed to all types of LVs. Down-modulation of various antiviral restriction factors, including the interferon-induced transmembrane proteins (IFITMs) is achieved with rapamycin as verified by mass spectrometry (LC-MS). Strikingly, rapamycin enhances transduction by up to 7-fold for CD8-LV and CD4-LV without compromising CAR T cell activities but does not improve VSV-LV. When administered to humanized mice, CD8-LV results in higher rates of green fluorescent protein (GFP) gene delivery. Also in vivo CAR T cell generation is improved in kinetics and tumor control, however to a moderate extent, leaving room for improvement by optimizing the rapamycin administration schedule. The data favor multi-omics approaches for improvements in gene delivery.


Assuntos
Receptores de Antígenos Quiméricos , Humanos , Camundongos , Animais , Receptores de Antígenos Quiméricos/genética , Lentivirus/genética , Vetores Genéticos/genética , Técnicas de Transferência de Genes , Antivirais
3.
Front Immunol ; 14: 1183698, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37646032

RESUMO

Chimeric antigen receptor (CAR)-expressing T cells are a complex and heterogeneous gene therapy product with variable phenotype compositions. A higher proportion of less differentiated CAR T cells is usually associated with improved antitumoral function and persistence. We describe in this study a novel receptor-targeted lentiviral vector (LV) named 62L-LV that preferentially transduces less differentiated T cells marked by the L-selectin receptor CD62L, with transduction rates of up to 70% of CD4+ and 50% of CD8+ primary T cells. Remarkably, higher amounts of less differentiated T cells are transduced and preserved upon long-term cultivation using 62L-LV compared to VSV-LV. Interestingly, shed CD62L neither altered the binding of 62L-LV particles to T cells nor impacted their transduction. The incubation of 2 days of activated T lymphocytes with 62L-LV or VSV-LV for only 24 hours was sufficient to generate CAR T cells that controlled tumor growth in a leukemia tumor mouse model. The data proved that potent CAR T cells can be generated by short-term ex vivo exposure of primary cells to LVs. As a first vector type that preferentially transduces less differentiated T lymphocytes, 62L-LV has the potential to circumvent cumbersome selections of T cell subtypes and offers substantial shortening of the CAR T cell manufacturing process.


Assuntos
Linfócitos T CD8-Positivos , Terapia Genética , Humanos , Animais , Camundongos , Diferenciação Celular , Modelos Animais de Doenças , Selectina L/genética , RNA
4.
Mol Ther Methods Clin Dev ; 28: 90-98, 2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36620073

RESUMO

CD3-targeted lentiviral vectors (CD3-LVs) mediate selective transduction of human T lymphocytes in vitro and in vivo while simultaneously activating the targeted cells. Previously, we have demonstrated that CD3-LV leads to downmodulation of the CD3:T cell receptor (TCR) complex. We therefore hypothesized that inhibition of CD3 phosphorylation by Src/Abl tyrosine kinase inhibitors such as dasatinib results in enhancement of gene delivery by T cell-targeted LVs. Indeed, dasatinib treatment of T cells prior to incubation with CD3-LV increased reporter gene delivery by 3- to 10-fold. Moreover, the presence of dasatinib enhanced selective transduction into non-activated target cells present in whole blood. When combined with delivery of the CD19-chimeric antigen receptor (CAR) gene, dasatinib increased CAR T cell numbers by close to 10-fold. Importantly, the short-term exposure of T cells to dasatinib during vector incubation did not interfere with tumor cell killing by the resulting CAR T cells and rather came along with less upregulated exhaustion markers and a more naive phenotype. Our data suggest that dasatinib prevents CD3-LV-induced phosphorylation and CD3:TCR intake, thereby increasing the amount of CD3-LV bound to the cell surface. This is the first description of dasatinib as transduction enhancer, an activity particularly relevant for CAR T cell generation with CD3-LV.

5.
Mol Ther ; 30(7): 2401-2415, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35598048

RESUMO

Chimeric antigen receptor (CAR) T cells are a cancer immunotherapy of extremes. Unprecedentedly effective, but complex and costly to manufacture, they are not yet a therapeutic option for all who would benefit. This disparity has motivated worldwide efforts to simplify treatment. Among the proposed solutions, the generation of CAR T cells directly in the patient, i.e., in vivo, is arguably simultaneously the most technically challenging and clinically useful approach to convert CAR therapy from a cell-based autologous medicinal product into a universally applicable off-the-shelf treatment. Here, we review the current state of the art of in vivo CAR therapy, focusing especially on the vector technologies used. These cover lentiviral vectors and adenovirus-associated vectors as well as synthetic polymer nanocarriers and lipid nanoparticles. Proof of concept, i.e., the generation of CAR cells directly in mouse models, has been demonstrated for all vector platforms. Receptor targeting of vector particles is crucial, as it can prevent CAR gene delivery into off-target cells, thus reducing toxicities. We discuss the properties of the vector platforms, such as their immunogenicity, potency, and modes of CAR delivery (permanent versus transient). Finally, we outline the work required to advance in vivo CAR therapy from proof of concept to a robust, scalable technology for clinical testing.


Assuntos
Imunoterapia Adotiva , Medicina de Precisão , Receptores de Antígenos Quiméricos , Animais , Lipossomos , Camundongos , Nanopartículas , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos Quiméricos/genética , Linfócitos T
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA