Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Sci Total Environ ; 954: 176424, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39306127

RESUMO

New industrial parks, including fine chemical, medical manufacturers, etc., are emerging in modern cities in China, whereas their emissions and impacts have not been fully illuminated. In this study, ambient volatile organic compounds (VOCs) in Huizhou were measured in three functional zones, namely new industrial, roadside, and residential zones. The average mixing ratios of total VOCs were as follow: industrial (56.22 ± 15.06 ppbv) > roadside (39.30 ± 12.96 ppbv) > residential (26.03 ± 7.31 ppbv). The ozone formation potential (OFP) and secondary organic aerosol formation potential (SOAP) of VOCs in the industrial zone were 1.5-2.3 and 1.7-3.1 times those in the other zones, respectively. Aromatics contributed the most to OFP (39.8 % - 44.8 %) and SOAP (78.9 % - 91.0 %), with much less contributions to VOCs mixing ratios (18.3 % - 21.2 %). Naphthalene was the most abundant aromatic species across the three zones and ranked among the top contributors to OFP and SOAP among all VOCs species. Source apportionment identified that new industrial emissions and solvent use was the largest VOCs contributor in the industrial zone (53.9 %), traffic-related emissions dominated in the roadside zone (40.7 %), while new industrial and traffic-related emissions contributed similar in the residential zone (32.9 % and 34.7 %, respectively). The carcinogenic and non-carcinogenic risks of hazardous VOCs were above the acceptable threshold, primarily due to new industrial and traffic-related emissions. Our results suggested to strengthen the control of new industrial emissions and aromatics sources in Huizhou city to improve air quality and protect human health.

2.
Sci Total Environ ; 949: 175182, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39089373

RESUMO

Formaldehyde (HCHO) is an important source for driving tropospheric ozone (O3) formation. This study investigated the combined effects of anthropogenic and biogenic emission on O3 formation in the Guanzhong Basin (GZB), Central China, providing useful information into the mechanisms of O3 formation due to the interaction between anthropogenic and biogenic volatile organic compounds (VOCs). A severe O3 pollution episode in summer of 2017 was simulated using the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) to examine the impacts of ambient HCHO on ground-level O3. Results showed secondary HCHO dominated ambient levels, peaking in the afternoon (up to 86 %), while primary emissions contributed 14 % on average. This enhanced O3 production by 7.7 % during the morning rush hour and 24.3 % in the afternoon. In addition, HCHO concentration peaked before that of O3, suggesting it plays significant role in O3 formation. Biogenic emission oxidation contributed 3.1 µg m-3 (53.1 %) of HCHO and 5.2 pptv (40.1 %) of hydroperoxyl radicals (HO2) in average urban areas, where the downwind regions of the forests had high nitrogen oxides (NOx) levels and favorable conditions for O3 production (17.3 µg m-3, 20.5 %). In forested regions, sustained isoprene oxidation led to elevated oxidized VOCs including HCHO and acetaldehyde downwind, which practiced further photolysis of O3 formation with anthropogenic NOx in urban areas. Sensitivity experiments recommend controlling industrial and traffic NOx emissions, with regional joint prevention and regulation, which are essential to reduce O3 pollution.


Assuntos
Poluentes Atmosféricos , Monitoramento Ambiental , Formaldeído , Ozônio , Compostos Orgânicos Voláteis , Formaldeído/análise , Poluentes Atmosféricos/análise , China , Ozônio/análise , Compostos Orgânicos Voláteis/análise , Florestas , Poluição do Ar/estatística & dados numéricos
3.
Ecotoxicol Environ Saf ; 280: 116530, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38833976

RESUMO

The heavy metals and bioreactivity properties of endotoxin in personal exposure to fine particulate matter (PM2.5) were characterized in the analysis. The average personal exposure concentrations to PM2.5 were ranged from 6.8 to 96.6 µg/m3. The mean personal PM2.5 concentrations in spring, summer, autumn, and winter were 32.1±15.8, 22.4±11.8, 35.3±11.9, and 50.2±19.9 µg/m3, respectively. There were 85 % of study targets exceeded the World Health Organization (WHO) PM2.5 threshold (24 hours). The mean endotoxin concentrations ranged from 1.086 ± 0.384-1.912 ± 0.419 EU/m3, with a geometric mean (GM) varied from 1.034 to 1.869. The concentration of iron (Fe) (0.008-1.16 µg/m3) was one of the most abundant transition metals in the samples that could affect endotoxin toxicity under Toll-Like Receptor 4 (TLR4) stimulation. In summer, the interleukin 6 (IL-6) levels showed statistically significant differences compared to other seasons. Spearman correlation analysis showed endotoxin concentrations were positively correlated with chromium (Cr) and nickel (Ni), implying possible roles as nutrients and further transport via adhering to the surface of fine inorganic particles. Mixed-effects model analysis demonstrated that Tumor necrosis factor-α (TNF-α) production was positively associated with endotoxin concentration and Cr as a combined exposure factor. The Cr contained the highest combined effect (0.205-0.262), suggesting that Cr can potentially exacerbate the effect of endotoxin on inflammation and oxidative stress. The findings will be useful for practical policies for mitigating air pollution to protect the public health of the citizens.


Assuntos
Poluentes Atmosféricos , Endotoxinas , Monitoramento Ambiental , Material Particulado , Estações do Ano , Material Particulado/análise , Endotoxinas/análise , Humanos , Hong Kong , Poluentes Atmosféricos/análise , Idoso , Exposição Ambiental , Metais Pesados/análise , Interleucina-6 , Fator de Necrose Tumoral alfa , Tamanho da Partícula , Feminino , Masculino
4.
J Hazard Mater ; 468: 133773, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38382337

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) in urban fugitive dust, known for their toxicity and ability to generate reactive oxygen species (ROS), are a major public health concern. This study assessed the spatial distribution and health risks of 15 PAHs in construction dust (CD) and road dust (RD) samples collected from June to November 2021 over the cities of Tongchuan (TC), Baoji (BJ), Xianyang (XY), and Xi'an (XA) in the Guanzhong Plain, China. The average concentration of ΣPAHs in RD was 39.5 ± 20.0 µg g-1, approximately twice as much as in CD. Four-ring PAHs from fossil fuels combustion accounted for the highest proportion of ΣPAHs in fugitive dust over all four cities. Health-related indicators including benzo(a)pyrene toxic equivalency factors (BAPTEQ), oxidative potential (OP), and incremental lifetime cancer risk (ILCR) all presented higher risk in RD than those in CD. The multilayer perceptron neural network algorithm quantified that vehicular and industrial emissions contributed 86 % and 61 % to RD and CD BAPTEQ, respectively. For OP, the sources of biomass and coal combustion were the key generator which accounted for 31-54 %. These findings provide scientific evidence for the direct efforts toward decreasing the health risks of fugitive dust in Guanzhong Plain urban agglomeration, China.


Assuntos
Poluentes Atmosféricos , Hidrocarbonetos Policíclicos Aromáticos , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/análise , Poeira/análise , Monitoramento Ambiental , Medição de Risco , China , Cidades , Redes Neurais de Computação , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise
5.
Environ Pollut ; 338: 122699, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37802290

RESUMO

Personal exposure (PE) to polycyclic aromatic hydrocarbons (PAHs) and their derivatives in particulate matter with two aerodynamic sizes of 2.5 and 0.25 µm (PM2.5 and PM0.25) from rural housewives was studied in the Fenwei Plain, China. A total of 15 households were divided into five different groups based on the type of solid fuel and heating device used, including biomass briquette-furnace (BBF), biomass-elevated Kang (BEK), outdoor lump coal-boiler (OLC), indoor briquette coal-stove (IBC), and electricity (ELE). The PE concentrations of the PAHs and biomarkers in urine collected from the participants were determined. The results showed that the PE concentrations of total quantified PAHs in the biomass group (i.e., BBF and BEK) were 2.2 and 2.0 times higher than those in the coal groups (i.e., OLC and IBC) in PM2.5 and PM0.25, respectively. The housewives who used biomass as fuel suffered from higher potential health impacts than the coal fuel users. The incremental lifetime cancer risk for the PAHs in PM2.5 in the BBF and BEK groups exceeded the international safety threshold. Furthermore, the PE concentrations of oxygenated PAH (o-PAHs) in PM2.5 and PM0.25 in the biomass groups and the nitrated PAHs (n-PAHs) in PM0.25 in the coal groups showed strong correlations with the biomarkers. The results of this study proved the associations between exposure to the different classes of PAHs and health hazards. The findings could also serve as a guideline in establishing efficient measures for using solid fuels for cooking and household warming in northern China.


Assuntos
Poluentes Atmosféricos , Hidrocarbonetos Policíclicos Aromáticos , Humanos , Poluentes Atmosféricos/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Calefação , Monitoramento Ambiental , Material Particulado/análise , China , Carvão Mineral/análise , Culinária/métodos , Biomarcadores
6.
Environ Pollut ; 330: 121835, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37201573

RESUMO

Tire and road wear microplastics (TRWMPs) are one of the main non-exhaust pollutants of motor vehicles, which cause serious environmental and health issues. Here, TRWMPs in PM2.5 samples were collected in a tunnel in urban Xi'an, northwest China, during four periods [I: 7:30-10:30, II: 11:00-14:00, III: 16:30-19:30, IV: 20:00-23:00 local standard time (LST)] in summer of 2019. The chemical components of rubbers, benzothiazoles, phthalates, and amines in TRWMPs were quantified, with a total concentration of 6522 ± 1455 ng m-3 (mean ± standard deviation). Phthalates were predominant in TRWMPs, accounting for 64.8% on average, followed by rubbers (33.2%) and benzothiazoles (1.19%). The diurnal variations of TRWMPs showed the highest concentration in Period III (evening rush hour) and the lowest concentration in Period I (morning rush hour), which were not exactly consistent with the variation of the number of light-duty vehicles passed through the tunnel. The result implied that the number of vehicles might not be the most important contributor to TRWMPs concentration, whereas meteorological variables (i.e., precipitation, and relative humidity), vehicle speed, vehicle class, and road cleaning also affected their abundances. The non-carcinogenic risk of TRWMPs in this study was within the international safety threshold, but their carcinogenic risk exceeded the threshold by 2.7-4.6 times, mostly dominated by bis(2-ethylhexyl)phthalate (DEHP). This study provides a new basis for the source apportionment of urban PM2.5 in China. The high concentrations and high potential cancer risks of TRWMPs represent the requirement for more efficient measures to control light-duty vehicle emissions.


Assuntos
Poluentes Atmosféricos , Poluentes Atmosféricos/análise , Material Particulado/análise , Microplásticos , Plásticos , Monitoramento Ambiental , Emissões de Veículos/análise , China , Veículos Automotores , Benzotiazóis
7.
Sci Total Environ ; 888: 164187, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37187401

RESUMO

Heavy use of solid fuels in rural households of northern China emits huge amounts of fine particulate matter (i.e., PM2.5) that pose notable indoor air pollution and severe inhalation health risks. In this study, the environmental and health benefits of clean energy substitution were accessed by monitoring indoor and personal exposure to polycyclic aromatic hydrocarbons (PAHs) and their derivatives, and pulmonary function and biological parameters. After substitutions of traditional lump coal and biomass fuels by clean coal, indoor concentrations of parent PAHs (p-PAHs), alkylated PAHs (a-PAHs), oxygenated PAHs (o-PAHs), and nitro PAHs (n-PAHs) reduced by 71 %, 32 %, 70 %, and 76 %, while personal exposure concentrations decreased by 82 %, 87 %, 93 %, and 86 %, respectively. However, the proportion of low molecular weight PAHs increases, especially for 2-ring a-PAHs and 3-ring n-PAHs. Domestic solid fuel burning induces greater damage to the small airway than the large airway. Pulmonary function parameter reductions in the clean coal group are much less than those in the other two fuel groups. Salivary interleukin-6 (IL-6) and 8-hydroxy-2'-deoxyguanosine (8-OHdG) significantly correlated with PAH species, among which p-PAHs and PAHs derivatives strongly with IL-6 and 8-OHdG, respectively. The correlation between PAHs and biomarkers in urine is insignificant. In addition, the use of clean coal can reduce the cancer risk for the four classes of PAHs by 60 %-97 %, mainly owing to the lower contributions from p-PAHs and o-PAHs. The result of the study provides scientific support for clean energy retrofit and an understanding of health benefits from solid fuel substitutions.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Hidrocarbonetos Policíclicos Aromáticos , Humanos , Poluentes Atmosféricos/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Interleucina-6 , Monitoramento Ambiental , Material Particulado/análise , Poluição do Ar em Ambientes Fechados/análise , Carvão Mineral/análise , 8-Hidroxi-2'-Desoxiguanosina , China
8.
Cancer Rep (Hoboken) ; 6(5): e1810, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36987545

RESUMO

BACKGROUND: Human papillomavirus (HPV) is the causative agent of nearly all forms of cervical cancer, which can arise upon viral integration into the host genome and concurrent loss of viral regulatory gene E2. Gene-based delivery approaches show that E2 reintroduction reduces proliferative capacity and promotes apoptosis in vitro. AIMS: This work explored if our calcium-dependent protein-based delivery system, TAT-CaM, could deliver functional E2 protein directly into cervical cancer cells to limit proliferative capacity and induce cell death. MATERIALS AND RESULTS: TAT-CaM and the HPV16 E2 protein containing a CaM-binding sequence (CBS-E2) were expressed and purified from Escherichia coli. Calcium-dependent binding kinetics were verified by biolayer interferometry. Equimolar TAT-CaM:CBS-E2 constructs were delivered into the HPV16+ SiHa cell line and uptake verified by confocal microscopy. Proliferative capacity was measured by MTS assay and cell death was measured by release of lactate dehydrogenase. As a control, human microvascular cells (HMECs) were used. As expected, TAT-CaM bound CBS-E2 with high affinity in the presence of calcium and rapidly disassociated upon its removal. After introduction by TAT-CaM, fluorescently labeled CBS-E2 was detected in cellular interiors by orthogonal projections taken at the depth of the nucleus. In dividing cells, E2 relocalized to regions associated with the mitotic spindle. Cells receiving a daily dose of CBS-E2 for 4 days showed a significant reduction in metabolic activity at low doses and increased cell death at high doses compared to controls. This phenotype was retained for 7 days with no further treatments. When subcultured on day 12, treated cells regained their proliferative capacity. CONCLUSIONS: Using the TAT-CaM platform, bioactive E2 protein was delivered into living cervical cancer cells, inducing senescence and cell death in a time- and dose-dependent manner. These results suggest that this nucleic acid and virus-free delivery method could be harnessed to develop novel, effective protein therapeutics.


Assuntos
Peptídeos Penetradores de Células , Neoplasias do Colo do Útero , Feminino , Humanos , Neoplasias do Colo do Útero/terapia , Papillomavirus Humano , Cálcio , Proteínas E7 de Papillomavirus , Apoptose
9.
Sci Total Environ ; 856(Pt 2): 159217, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36206913

RESUMO

Solid fuel combustion for domestic heating in northern China in the wintertime is of great environmental and health concern. This study assesses personal exposure to particulate matter with different aerodynamic diameters and multiple gaseous pollutants from 123 rural residents in Yuncheng, the Fenwei Plain. The subjects are divided into groups based on the unique energy source applied, including biomass, coal, and electricity/no heating activities. The health effects of the exposures are expressed with four urinary biomarkers. The personal exposure levels to three different aerodynamic particle sizes (i.e., PM10, PM2.5, and PM1) of the electricity/no heating group are 5.1 % -12 % lower than those of the coal group. In addition, the exposure levels are 25 %-40 % lower for carbon monoxide (CO) and 10.8 %-20.3 % lower for ozone (O3) in the electricity/no heating group than the other two fuel groups. C-reactive protein (CRP) in the urine of the participants in biomass and coal groups is significantly higher than that in the electricity/no heating group, consistent with the observations on other biomarkers. Increases in 8-hydroxy-2 deoxyguanosine (8-OHdG), interleukin-8 (IL-8), and vascular endothelial growth factor (VEGF) are observed for the exposures to higher concentrations of air pollutants. For instance, PMs and nitrogen dioxide (NO2) show significant impacts on positive correlations with 8-OHdG and IL-8, while O3 positively correlates with CRP. PM1 exhibits higher effects on the biomarkers than the gaseous pollutants, especially on VEGF and IL-8. The study indicates that excessive use of traditional domestic solid fuels could pose severe health effects on rural residents. The promotion of using clean energy is urgently needed in the rural areas of northern China.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Humanos , Interleucina-8 , Fator A de Crescimento do Endotélio Vascular , Monitoramento Ambiental , Material Particulado/análise , Poluentes Atmosféricos/análise , Culinária , Carvão Mineral , China , Biomarcadores , Poluição do Ar em Ambientes Fechados/análise
10.
Artigo em Inglês | MEDLINE | ID: mdl-36294006

RESUMO

We performed personal PM2.5 monitoring involving 56 adult residents in Hong Kong. Additionally, paired personal and residential indoor fine particle (PM2.5) samples were collected from 26 homes and from 3 fixed monitoring locations (i.e., outdoor samples). Six PM2.5-bound phthalate esters (PAEs)-including dimethyl phthalate (DMP), diethyl phthalate (DEP), di-n-butyl phthalate (DnBP), butyl benzyl phthalate (BBP), di(2-ethylhexyl) phthalate (DEHP), and di-n-octyl phthalate (DnOP)-were measured using a thermal desorption-gas chromatography/mass spectrometer method. Average ∑6PAEs (i.e., summation of six PAE congeners) concentrations in personal PM2.5 exposure (699.4 ng/m3) were comparable with those in residential indoors (646.9 ng/m3), and both were slightly lower than the outdoor levels. DEHP was the most abundant PAE congener (80.3%-85.0%) and found at the highest levels in different exposure categories, followed by BBP, DnBP, and DnOP. Strong correlations were observed between DEHP with DnBP (rs: 0.81-0.90; p < 0.01), BBP (rs: 0.81-0.90; p < 0.01), and DnOP (rs: 0.87-0.93; p < 0.01) in each exposure category. However, no apparent intercorrelations were shown for PAE congeners. Higher indoor concentrations and a stronger correlation between DMP and DEP were found compared with outdoor concentrations. Principal component analysis affirmed heterogeneous distribution and notable variations in PAE sources across different exposure categories. The average daily intakes of ∑6PAEs and DEHP via inhalation were 0.14-0.17 and 0.12-0.16 µg/kg-day for adults in Hong Kong. A time-weighted model was used to estimate PAE exposures incorporating residential indoor and outdoor exposure and time activities. The inhalation cancer risks attributable to measured and estimated personal exposure to DEHP exceeded the U.S. EPA's benchmark (1 × 10-6). The results provide critical information for mitigation strategies, suggesting that PAEs from both ambient and indoor sources should be considered when exploring the inhalation health risks of PAEs exposure.


Assuntos
Dietilexilftalato , Ácidos Ftálicos , China , Dibutilftalato , Dietilexilftalato/análise , Ésteres/análise , Hong Kong , Material Particulado/análise , Ácidos Ftálicos/análise , Medição de Risco
11.
Environ Sci Pollut Res Int ; 29(43): 64582-64596, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35471756

RESUMO

Baoji is a typical heavy industrial city in northwest China. Its air quality is greatly impacted by the emission from the factories. Elements in fine particulate matter (PM2.5) that are greatly emitted from anthropogenic sources could pose diverse health impacts on humans. In this study, an online AMMS-100 atmospheric heavy metal analyzer was used to quantify 30 elements in PM2.5 under the weak and strong anthropogenic disturbance scenarios before the city lockdown period (from January 9th to 23rd) and the lockdown period (from January 26th to February 9th) due to the outbreak of COVID-19 in 2020. During the lockdown period, the average total concentration of total quantified elements was 3475.0 ng/m3, which was 28% and 33% lower than that of the week and strong anthropogenic disturbance scenarios during the pre-lockdown period. The greatest reductions were found for the elements of chromium (Cr), titanium (Ti), manganese (Mn), and Zinc (Zn), consistent with the industrial structure of Baoji. The mass concentrations of most elements showed obvious reductions when the government post-alerted the industries to reduce the operations and production. Dust, traffic sources, combustion, non-ferrous metal processing, and Ti-related industrial processing that are the contributors of the elements in the pre-lockdown period were apportioned by the positive matrix factorization (PMF) model. Substantial changes in the quantified elements' compositions and sources were found in the lockdown period. Health assessment was conducted and characterized by apportioned sources. The highest non-carcinogenic risk (HQ) was seen for Zn, demonstrating the high emissions from the related industrial activities. The concentration level of arsenic (As) exceeded the incremental lifetime carcinogenic risk (ILCR) in the lockdown period. This could be attributed to the traditional firework activities for the celebration of the Chinese New Year within the lockdown period.


Assuntos
Poluentes Atmosféricos , Arsênio , COVID-19 , Metais Pesados , Poluentes Atmosféricos/análise , Efeitos Antropogênicos , China , Cromo , Controle de Doenças Transmissíveis , Poeira/análise , Monitoramento Ambiental , Humanos , Manganês , Material Particulado/análise , Titânio , Zinco
12.
Environ Pollut ; 286: 117573, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34438495

RESUMO

Solid fuel is a the most dominant energy source for household usages in developing countries. In this study, emission characteristics on organic carbon (OC), elemental carbon (EC) and fifty-two polycyclic aromatic hydrocarbons (PAHs) in gaseous and particulate phases from seven fuel-stove combinations were studied in a typical rural village in northwest China. For the PAHs, the highest gaseous and particulate phase emission factors (EFs) were both observed for bituminous coal with one-stage stoves, ranging from 459 ± 154 to 1.09 ± 0.36 × 103 mg kg-1. In contrast, the PAHs EFs for the clean briquette coal with two-stage stoves were two orders of magnitude lower than those of the bituminous coals. For parent PAHs (pPAHs) and total quantified PAHs (∑PAHs), they mainly contributed in gaseous phases with compositions of 69-79% and 64-70%, respectively. The gas-to-particle partitioning was mostly governed by the absorption. Moreover, the correlation coefficient (r) between EC and ∑PAHs, OC and parent PAHs (pPAHs), OC and nitro PAHs (nPAHs) were 0.81, 0.67 and 0.85, respectively, supporting that the PAHs species were potential precursors to the EC formation during the solid fuel combustion. The correlation analyses in this study further deduced that the formations of pPAHs and nPAHs were more closely related to that of OC than alkylated PAHs (aPAHs) and oxygenated PAHs (oPAHs). Diagnostic ratios of selective PAHs were calculated and evaluated as well. Among those, the ratio of retene (RET)/[RET + chyrene (CHR)] was found to be an efficient tool to distinguish coal combustion and biomass burning. In general, it was found that the amounts of pollutant emissions from clean briquette coal combustion were definitely lower than those from bituminous coal and biomass combustions. It is thus necessary to introduce and recommend the use of cleaner briquette coal as energy source.


Assuntos
Poluentes Atmosféricos , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Atmosféricos/análise , China , Carvão Mineral/análise , Monitoramento Ambiental , Material Particulado/análise , Hidrocarbonetos Policíclicos Aromáticos/análise
13.
Environ Pollut ; 282: 117057, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-33839616

RESUMO

Traffic source-dominated volatile organic compound (VOC) samples were collected during four time-intervals in a day (Ⅰ: 7:30-10:30, Ⅱ: 11:00-14:00, Ⅲ: 16:30-19:30, and Ⅳ: 20:00-23:00) in a tunnel in summer, 2019, in Xi'an, China. The total measured VOC (TVOC) in periods Ⅰ and Ⅲ (rush hours, 107.2 ± 8.2 parts per billion by volume [ppbv]) was 1.8 times that in periods Ⅱ and Ⅳ (non-rush hours, 58.6 ± 13.8 ppbv), consistent with the variation in vehicle numbers in the tunnel. The considerably elevated ethane and ethylbenzene levels could have been attributed to emissions from compressed natural gas vehicles and the rapid development of methanol-fueled taxis in Xi'an in 2019. The mixing ratios of benzene, toluene, ethylbenzene, and xylenes (BTEX) contributed 9.4%-12.7% to TVOCs, and the contributions were nearly 40% higher in periods Ⅰ and Ⅲ than in Ⅱ and Ⅳ, indicating that BTEX levels were strongly affected by vehicle emissions. The indicators of motor vehicle emission, namely ethylene, propylene, toluene, m/p-xylenes, o-xylene, and propane, contributed to more than half of the ozone formation potential in this study. The noncarcinogenic risks of VOCs in this study were within the international safety standard, whereas the carcinogenic risks exceeded the standard by 2.3-4.6 times, suggesting that carcinogenic risks were more serious than noncarcinogenic risks. VOCs presented 2.2 and 1.4 times noncarcinogenic and carcinogenic risks during rush hours than during non-rush hours, respectively. Notably, the carcinogenic risk in period Ⅳ was comparable with that in period Ⅲ; however, the vehicle numbers and VOC mixing ratios were the lowest at night, which may have attributed to the increasing number and proportion of methanol M100-fueled vehicles in the tunnel. Therefore, VOCs emitted by new energy vehicles should also be seriously considered while evaluating fossil fuel vehicle emissions.


Assuntos
Poluentes Atmosféricos , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , China , Monitoramento Ambiental , Emissões de Veículos/análise , Compostos Orgânicos Voláteis/análise
14.
Environ Pollut ; 269: 116148, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33310199

RESUMO

An improved understanding of the historical variation in the emissions and sources (biomass burning, BB vs. fossil fuel, FF combustion) of soot and char, the two components of black carbon (BC), and polycyclic aromatic compounds (PACs) may help in assessing the environmental effects of the Atmospheric Brown Cloud (ABC) in SE Asia. We therefore determined historical variations of the fluxes of soot, char, and PACs (24 polycyclic aromatic hydrocarbons (PAHs), 12 oxygenated PAHs (OPAHs), and 4 azaarenes) in a dated sediment core (covering the past ∼150 years) of Phayao Lake in Thailand. The soot fluxes have been increasing in recent times, but at a far lower rate than previously estimated based on BC emission inventories. This may be associated with a decreasing BB contribution as indicated by the decreasing char fluxes from old to young sediments. The fluxes of high- and low-molecular-weight (HMW and LMW) PAHs, OPAHs, and azaarenes all sharply increased after ∼1980, while the ΣLMW-/ΣHMW-PAHs ratios decreased, further supporting the reduction in BB contribution at the expense of increasing FF combustion emissions. We also suggest that the separate record of char and soot, which has up to now not been done in aerosol studies, is useful to assess the environmental effects of ABC because of the different light-absorbing properties of these two BC components. Our results suggest that besides the establishment of improved FF combustion technology, BB must be further reduced in the SE Asian region in order to weaken the ABC haze.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Compostos Policíclicos , Carbono/análise , Monitoramento Ambiental , Sedimentos Geológicos , Lagos , Hidrocarbonetos Policíclicos Aromáticos/análise , Fuligem/análise , Tailândia
15.
Chemosphere ; 261: 127758, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32736246

RESUMO

Cooking emissions are both indoor and outdoor sources for fine particulate matter (PM2.5) but their contributions are often ignored. The PM2.5-bound organic compounds, including alkanols, alkanes, monocarboxylic acids, dicarboxylic acids, and polycyclic aromatic hydrocarbons (PAHs) were determined in the emissions from the most popular types of restaurants in the capital city of northwestern China. The mean concentration of total quantified organic compounds (ΣPM_O) ranged from 1112 to 32,016 ng m-3, with the maximum for the Chinese barbecue restaurants. The ΣPM_O accounted for an average of 11% of PM2.5 mass, demonstrating their significances in the cooking emissions. Hexadecanoic acid (C16) and 1-hexadecanol (C16) were considered as the tracers for stir-frying, steaming, and boiling which are usually applied in the traditional Chinese cuisines; 1-undecanol (C11), 9-fluorenone, and indeno[1,2,3-cd]pyrene were found to be potential markers for grilling and deep-frying which are widely applied in the Western style cooking method. The PAH diagnostic ratios also illustrated their representatives to distinguish the emissions from traditional Chinese cuisines and the Western-style restaurants. The estimated carcinogenic risks for the restaurants that consumed a large amount of oils and employed high temperature cooking methods (e.g., barbecuing and deep-frying) were 2.6-4.2 times exceeded the international safety limit. The organic profiles obtained in this study could be contributed to refine PM2.5 source apportionment in urban areas in northwestern China. The estimations of potential cancer risks urge the establishment of more stringent legislations to protect the health of the catering staffs.


Assuntos
Poluentes Atmosféricos/análise , Culinária , Monitoramento Ambiental/métodos , Neoplasias/epidemiologia , Compostos Orgânicos/análise , Material Particulado/análise , Poluentes Atmosféricos/química , China , Cidades , Culinária/métodos , Humanos , Neoplasias/induzido quimicamente , Compostos Orgânicos/química , Material Particulado/química , Restaurantes , Medição de Risco
16.
Sci Total Environ ; 687: 188-197, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31207509

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) in road dust (RD) and construction dust (CD) in PM2.5 were quantified in the samples collected in 20 Chinese cities. The PAHs profiles in urban PM2.5 fugitive dusts were determined and their potential health risks were evaluated. Seven geographical regions in China were identified as northwest China (NWC), the North China Plain (NCP), northeast China (NEC), central China (CC), south China (SC), southwest China (SWC), and east China (EC). The overall average concentrations of total quantified PAHs (ΣPAHs) were 23.2 ±â€¯18.9 and 22.8 ±â€¯29.6 µg·g-1 in RD and CD of PM2.5, indicating that severe PAHs pollution to urban fugitive dusts in China. The differences of ΣPAHs between RD and CD were minor in northern and central regions of China but much larger in southern and east regions. The Æ©PAHs for RD displayed a pattern of "high in northern and low in southern", and characterized by large abundance of high molecular weights (HMWs) PAHs, indicating that vehicle emission was the predominant pollution origin. Additionally, higher diagnostic ratios of fluoranthene/(fluoranthene + pyrene) in NCP, CC, and SWC suggest critical contributions of biomass burning and coal combustion for RD in these areas. In comparison, gasoline combustion was the major pollution source for CD PAHs in NWC, NCP, NEC, and CC, whereas industrial emissions such as cement production and iron smelting had strong impacts in the heavy industrial regions. The total benzo[a]pyrene (BaP) carcinogenic potency concentrations (BaPTEQ) for RD and CD both showed the lowest in SC (0.05 and 0.07, respectively) and the highest in NCP (10.99 and 7.67, respectively). The highest and lowest incremental life cancer risks (ILCR) were found in NCP and SC, coinciding with the spatial distributions of ambient PAHs levels. The total CD-related cancer risks for adults and children (~10-4) suggest high potential health risks in NCP, SWC, and NWC, whereas the evaluated values in EC and SC indicate virtual safety (≤10-6).


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental , Material Particulado/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , China , Poeira/análise
17.
Sci Total Environ ; 662: 470-480, 2019 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-30695747

RESUMO

Hazardous volatile organic compounds (VOCs) and carbonyls were evaluated in typical dwellings in Xi'an in northwestern China in wintertime. High indoor concentrations were observed for formaldehyde, acetone, naphthalene, methylene chloride and acetaldehyde, associated with characteristic pollution sources. In comparison, many of the target VOCs were higher in Chinese dwellings than those in other countries, suggesting the significances of indoor pollutions in China. Source apportionment with receptor model shows that furniture and building materials (44.5%), paints and adhesives (11.9%), household products (17.3%), smoking (14.5%), and cooking (9.8%) are the major contributors to the indoor VOCs and carbonyls. The health risk assessment shows that the cancer risks for formaldehyde (5.73 × 10-5), 1,3-butadiene (2.07 × 10-5) and 1,2-dichloroethane (1.44 × 10-5) were much higher than the acceptable level of 1 × 10-6 recommended by International Register for Certified Auditors (IRCA). The hazard quotient (HQ) of target VOCs were far less than the threshold (HQ = 1). Moreover, the practical efficiency of household air purifier in removal of the VOCs and carbonyls was examined first time in dwellings in northern China. The results prove that most of the indoor organic pollutants and their cancer risk to humans can be efficiently reduced, particularly for formaldehyde and 1,3-butadiene. The findings of the study offer useful preliminary and updated information on current indoor air toxics levels, dominant pollution sources and their potential health risks to residents in northwest China.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Monitoramento Ambiental , Compostos Orgânicos Voláteis/análise , China , Cidades , Exposição Ambiental/análise , Humanos , Risco , Estações do Ano
18.
J Environ Sci (China) ; 77: 11-19, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30573075

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) have been of health concern due to its carcinogenesis and mutagenesis. In this study, we aimed to assess the variations, sources, and lifetime excessive cancer risk (ECR) attributable to PAHs bound to ambient particulate matters with aerodynamic diameter less than 2.5µm (PM2.5) in metropolitan Beijing, China. We collected 24-hour integrated PM2.5 samples on daily basis between November 2014 and June 2015 across both central heating (cold months) and non-heating (warm months) seasons, and further analyzed the PAH components in these daily PM2.5 samples. Our results showed that total concentrations of PM2.5-bound PAHs varied between (88.6±75.4)ng/m3 in the cold months and (11.0±5.9)ng/m3 in the warm months. Benzo[a]pyrene (BaP), the carcinogenic marker of PAHs, averaged at 5.7 and 0.4ng/m3 in the cold and warm months, respectively. Source apportionment analyses illustrated that gasoline, biomass burning, diesel, coal combustion and cooking were the major contributors, accounting for 12.9%, 17.8%, 24.7%, 24.3% and 6.4% of PM2.5-bound PAHs, respectively. The BaP equivalent lifetime ECR from inhalation of PM2.5-bound PAHs was 16.2 cases per million habitants. Our results suggested that ambient particulate reduction from energy reconstruction and adaption of clean fuels would result in reductions PM2.5-bound PAHs and its associated cancer risks. However, as only particulate phased PAHs was analyzed in the present study, the concentration of ambient PAHs could be underestimated.


Assuntos
Poluentes Atmosféricos/análise , Poluentes Atmosféricos/química , Monitoramento Ambiental , Material Particulado/química , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/química , Estações do Ano , Poluentes Atmosféricos/toxicidade , Pequim , Humanos , Neoplasias/induzido quimicamente , Neoplasias/epidemiologia , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Medição de Risco
19.
Environ Sci Pollut Res Int ; 25(21): 20591-20605, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29748814

RESUMO

An intensive sampling campaign of airborne fine particles (PM2.5) was conducted at Sanya, a coastal city in Southern China, from January to February 2012. Chemical analyses and mass reconstruction were used identify potential pollution sources and investigate atmospheric reaction mechanisms. A thermodynamic model indicated that low ammonia and high relative humidity caused the aerosols be acidic and that drove heterogeneous reactions which led to the formation of secondary inorganic aerosol. Relationships among neutralization ratios, free acidity, and air-mass trajectories suggest that the atmosphere at Sanya was impacted by both local and regional emissions. Three major transport pathways were identified, and flow from the northeast (from South China) typically brought the most polluted air to Sanya. A case study confirmed strong impact from South China (e.g., Pearl River Delta region) (contributed 76.8% to EC, and then this result can be extended to primary pollutants) when the northeast winds were dominant. The Weather Research Forecasting Black carbon model and trace organic markers were used to apportion local pollution versus regional contributions. Results of the study offer new insights into the atmospheric conditions and air pollution at this coastal city.


Assuntos
Poluentes Atmosféricos/química , Material Particulado/química , Aerossóis/química , Poluição do Ar/análise , China , Cidades , Monitoramento Ambiental , Umidade , Modelos Teóricos , Rios/química , Fuligem/química
20.
Sci Total Environ ; 633: 308-316, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-29574375

RESUMO

Impacts on indoor air quality of dining areas from cooking activities were investigated in eight categories of commercial restaurants including Szechwan Hotpot, Hunan, Shaanxi Noodle, Chinese Barbecue, Chinese Vegetarian, Korean Barbecue, Italian, and Indian, in Northwestern China during December 2011 to January 2012. Chemical characterization and health risk assessment for airborne carbonyls, and particulate-bound polycyclic aromatic hydrocarbons (PAHs) and heavy metals were conducted under low ventilation conditions in wintertime. The highest total quantified carbonyls (Σcarbonyls) concentration of 313.6µgm-3 was found in the Chinese Barbecue, followed by the Szechwan Hotpot (222.6µgm-3) and Indian (221.9µgm-3) restaurants. However, the highest Σcarbonyls per capita was found at the Indian restaurant (4500µgcapita-1), suggesting that cooking methods such as stir-fly and bake for spices ingredients released more carbonyls from thermal cooking processes. Formaldehyde, acetaldehyde, and acetone were the three most abundant species, totally accounting for >60% of mass concentrations of the Σcarbonyls. Phenanthrene, chrysene, and benzo[a]anthracene were the three most abundant PAHs. Low molecular weight fraction (ΣPAHs≤178) had the highest contributions accounting for 40.6%-65.7%, much greater than their heaver counterparts. Diagnostic PAHs ratios suggest that cooking fuel and environmental tobacco smoke (ETS) contribute to the indoor PAHs profiles. Lead was the most abundant heavy metal in all sampled restaurants. High quantity of nickel was also found in samples due to the emissions from stainless-steel made kitchen utensils and cookware and ETS. Cancer risk assessments on the toxic substances demonstrate that the working environment of dining areas were hazard to health. Formation of reactive organic species (ROS) from the cooking activities was evidenced by measurement of hydroxyl radical (OH) formed from simulating particulate matter (PM) react with surrogate lung fluid. The highest OH concentration of 294.4ngm-3 was detected in Chinese Barbecue. In addition, the elevation of the concentrations of PM and OH after non-dining periods implies that the significance of formation of oxidizing-active species indoor at poor ventilation environments.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/estatística & dados numéricos , Exposição por Inalação/estatística & dados numéricos , Restaurantes/estatística & dados numéricos , Poluição do Ar em Ambientes Fechados/análise , China , Culinária/estatística & dados numéricos , Monitoramento Ambiental , Humanos , Material Particulado/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Medição de Risco , Ventilação/métodos , Ventilação/estatística & dados numéricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA