Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Clin Transl Med ; 14(5): e1655, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38711203

RESUMO

BACKGROUND: Uterine leiomyosarcomas (uLMS) are aggressive tumours with poor prognosis and limited treatment options. Although immune checkpoint blockade (ICB) has proven effective in some 'challenging-to-treat' cancers, clinical trials showed that uLMS do not respond to ICB. Emerging evidence suggests that aberrant PI3K/mTOR signalling can drive resistance to ICB. We therefore explored the relevance of the PI3K/mTOR pathway for ICB treatment in uLMS and explored pharmacological inhibition of this pathway to sensitise these tumours to ICB. METHODS: We performed an integrated multiomics analysis based on TCGA data to explore the correlation between PI3K/mTOR dysregulation and immune infiltration in 101 LMS. We assessed response to PI3K/mTOR inhibitors in immunodeficient and humanized uLMS patient-derived xenografts (PDXs) by evaluating tumour microenvironment modulation using multiplex immunofluorescence. We explored response to single-agent and a combination of PI3K/mTOR inhibitors with PD-1 blockade in humanized uLMS PDXs. We mapped intratumoural dynamics using single-cell RNA/TCR sequencing of serially collected biopsies. RESULTS: PI3K/mTOR over-activation (pS6high) associated with lymphocyte depletion and wound healing immune landscapes in (u)LMS, suggesting it contributes to immune evasion. In contrast, PI3K/mTOR inhibition induced profound tumour microenvironment remodelling in an ICB-resistant humanized uLMS PDX model, fostering adaptive anti-tumour immune responses. Indeed, PI3K/mTOR inhibition induced macrophage repolarisation towards an anti-tumourigenic phenotype and increased antigen presentation on dendritic and tumour cells, but also promoted infiltration of PD-1+ T cells displaying an exhausted phenotype. When combined with anti-PD-1, PI3K/mTOR inhibition led to partial or complete tumour responses, whereas no response to single-agent anti-PD-1 was observed. Combination therapy reinvigorated exhausted T cells and induced clonal hyper-expansion of a cytotoxic CD8+ T-cell population supported by a CD4+ Th1 niche. CONCLUSIONS: Our findings indicate that aberrant PI3K/mTOR pathway activation contributes to immune escape in uLMS and provides a rationale for combining PI3K/mTOR inhibition with ICB for the treatment of this patient population.


Assuntos
Leiomiossarcoma , Microambiente Tumoral , Neoplasias Uterinas , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Leiomiossarcoma/tratamento farmacológico , Humanos , Feminino , Neoplasias Uterinas/tratamento farmacológico , Serina-Treonina Quinases TOR/antagonistas & inibidores , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de MTOR/farmacologia , Inibidores de MTOR/uso terapêutico , Animais , Camundongos , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase/uso terapêutico
2.
Leukemia ; 34(12): 3228-3241, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32111969

RESUMO

Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is associated with a remarkably poor prognosis and with no treatment consensus. The identification of relevant therapeutic targets is challenging. Here, we investigated the immune functions, antileukemia efficacy and safety of CD28/4-1BB CAR T cells targeting CD123 the interleukin (IL)-3 receptor alpha chain which is overexpressed on BPDCN. We demonstrated that both retroviral and lentiviral engineering CD28/4-1BB CD123 CAR T cells exhibit effector functions against BPDCN cells through CD123 antigen recognition and that they efficiently kill BPDCN cell lines and BPDCN-derived PDX cells. In vivo, CD28/4-1BB CD123 CAR T-cell therapy displayed strong efficacy by promoting a decrease of BPDCN blast burden. Furthermore we showed that T cells from BPDCN patient transduced with CD28/4-1BB CD123 CAR successfully eliminate autologous BPDCN blasts in vitro. Finally, we demonstrated in humanized mouse models that these effector CAR T cells exert low or no cytotoxicity against various subsets of normal cells with low CD123 expression, indicating a potentially low on-target/off-tumor toxicity effect. Collectively, our data support the further evaluation for clinical assessment of CD28/4-1BB CD123 CAR T cells in BPDCN neoplasm.


Assuntos
Antígenos CD28/imunologia , Células Dendríticas/imunologia , Subunidade alfa de Receptor de Interleucina-3/imunologia , Linfócitos T/imunologia , Animais , Linhagem Celular Tumoral , Citotoxicidade Imunológica/imunologia , Células HL-60 , Neoplasias Hematológicas/imunologia , Humanos , Imunoterapia Adotiva/métodos , Camundongos
3.
Circ Res ; 123(1): 100-106, 2018 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-29592957

RESUMO

RATIONALE: A rapid and massive influx of inflammatory cells occurs into ischemic area after myocardial infarction (MI), resulting in local release of cytokines and growth factors. Yet, the mechanisms regulating their production are not fully explored. The release of extracellular vesicles (EVs) in the interstitial space curbs important biological functions, including inflammation, and influences the development of cardiovascular diseases. To date, there is no evidence for in situ release of cardiac EVs after MI. OBJECTIVE: The present study tested the hypothesis that local EV generation in the infarcted heart coordinates cardiac inflammation after MI. METHODS AND RESULTS: Coronary artery ligation in mice transiently increases EV levels in the left ventricle when compared with sham animals. EVs from infarcted hearts were characterized as large vesicles (252±18 nm) expressing cardiomyocyte and endothelial markers and small EVs (118±4 nm) harboring exosomal markers, such as CD (cluster of differentiation) 63 and CD9. Cardiac large EVs generated after MI, but not small EVs or sham EVs, increased the release of IL (interleukin)-6, CCL (chemokine ligand) 2, and CCL7 from fluorescence-activated cell-sorted Ly6C+ cardiac monocytes. EVs of similar diameter were also isolated from fragments of interventricular septum obtained from patients undergoing aortic valve replacement, thus supporting the clinical relevance of our findings in mice. CONCLUSIONS: The present study demonstrates that acute MI transiently increases the generation of cardiac EVs characterized as both exosomes and microvesicles, originating mainly from cardiomyocytes and endothelial cells. EVs accumulating in the ischemic myocardium are rapidly taken up by infiltrating monocytes and regulate local inflammatory responses.


Assuntos
Vesículas Extracelulares/patologia , Infarto do Miocárdio/patologia , Miocardite/etiologia , Animais , Biomarcadores/metabolismo , Quimiocina CCL2/metabolismo , Quimiocina CCL7/metabolismo , Vasos Coronários , Células Endoteliais/metabolismo , Exossomos , Vesículas Extracelulares/metabolismo , Interleucina-6/metabolismo , Ligadura , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/complicações , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia
4.
Circulation ; 133(9): 826-39, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26819373

RESUMO

BACKGROUND: In infarcted heart, improper clearance of dying cells by activated neighboring phagocytes may precipitate the transition to heart failure. We analyzed the coordinated role of 2 major mediators of efferocytosis, the myeloid-epithelial-reproductive protein tyrosine kinase (Mertk) and the milk fat globule epidermal growth factor (Mfge8), in directing cardiac remodeling by skewing the inflammatory response after myocardial infarction. METHODS AND RESULTS: We generated double-deficient mice for Mertk and Mfge8 (Mertk(-/-)/Mfge8(-/-)) and challenged them with acute coronary ligature. Compared with wild-type, Mertk-deficient (Mertk(-/-)), or Mfge8-deficient (Mfge8(-/-)) animals, Mertk(-/-)/Mfge8(-/-) mice displayed greater alteration in cardiac function and remodeling. Mertk and Mfge8 were expressed mainly by cardiac Ly6C(High and Low) monocytes and macrophages. In parallel, Mertk(-/-)/Mfge8(-/-) bone marrow chimeras manifested increased accumulation of apoptotic cells, enhanced fibrotic area, and larger infarct size, as well as reduced angiogenesis. We found that the abrogation of efferocytosis affected neither the ability of circulating monocytes to infiltrate cardiac tissue nor the number of resident Ly6C(High) and Ly6C(How) monocytes/macrophages populating the infarcted milieu. In contrast, combined Mertk and Mfge8 deficiency in Ly6C(High)/Ly6C(Low) monocytes/macrophages either obtained from in vitro differentiation of bone marrow cells or isolated from infarcted hearts altered their capacity of efferocytosis and subsequently blunted vascular endothelial growth factor A (VEGFA) release. Using LysMCre(+)/VEGFA(fl/fl) mice, we further identified an important role for myeloid-derived VEGFA in improving cardiac function and angiogenesis. CONCLUSIONS: After myocardial infarction, Mertk- and Mfge8-expressing monocyte/macrophages synergistically engage the clearance of injured cardiomyocytes, favoring the secretion of VEGFA to locally repair the dysfunctional heart.


Assuntos
Antígenos de Superfície/biossíntese , Proteínas do Leite/biossíntese , Infarto do Miocárdio/metabolismo , Proteínas Proto-Oncogênicas/biossíntese , Receptores Proteína Tirosina Quinases/biossíntese , Fator A de Crescimento do Endotélio Vascular/metabolismo , Remodelação Ventricular/fisiologia , Animais , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Infarto do Miocárdio/patologia , Fagocitose/fisiologia , Proteínas Proto-Oncogênicas/deficiência , Receptores Proteína Tirosina Quinases/deficiência , c-Mer Tirosina Quinase
5.
Arterioscler Thromb Vasc Biol ; 34(6): 1126-35, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24675660

RESUMO

In patients with diabetes mellitus, the ability of ischemic tissue to synchronize the molecular and cellular events leading to restoration of tissue perfusion in response to the atherosclerotic occlusion of a patent artery is markedly impaired. As a consequence, adverse tissue remodeling and the extent of ischemic injury are intensified, leading to increased morbidity and mortality. Growing evidence from preclinical and clinical studies has implicated alterations in hypoxia-inducible factor 1 levels in the abrogation of proangiogenic pathways, including vascular endothelial growth factor A/phosphoinositide 3' kinase/AKT/endothelial nitric oxide synthase and in the activation of antiangiogenic signals characterized by accumulation of advanced glycation end products, reactive oxygen species overproduction, and endoplasmic reticulum stress. In addition, the diabetic milieu shows a switch toward proinflammatory antiregenerative pathways. Finally, the mobilization, subsequent recruitment, and the proangiogenic potential of the different subsets of angiogenesis-promoting bone marrow-derived cells are markedly impaired in the diabetic environment. In this review, we will give an overview of the current understanding on the signaling molecules contributing to the diabetes mellitus-induced impairment of postischemic revascularization mainly in the setting of myocardial infarction or critical limb ischemia.


Assuntos
Angiopatias Diabéticas/fisiopatologia , Isquemia/fisiopatologia , Neovascularização Fisiológica , Animais , Células da Medula Óssea/fisiologia , Movimento Celular , Células Endoteliais/citologia , Produtos Finais de Glicação Avançada/fisiologia , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/fisiologia , Inflamação/fisiopatologia , MicroRNAs/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Fator A de Crescimento do Endotélio Vascular/fisiologia
6.
Stem Cells ; 32(1): 231-43, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24105925

RESUMO

Upregulation of hypoxia-inducible transcription factor-1α (HIF-1α), through prolyl-hydroxylase domain protein (PHD) inhibition, can be thought of as a master switch that coordinates the expression of a wide repertoire of genes involved in regulating vascular growth and remodeling. We aimed to unravel the effect of specific PHD2 isoform silencing in cell-based strategies designed to promote therapeutic revascularization in patients with critical limb ischemia (CLI). PHD2 mRNA levels were upregulated whereas that of HIF-1α were downregulated in blood cells from patients with CLI. We therefore assessed the putative beneficial effects of PHD2 silencing on human bone marrow-derived mesenchymal stem cells (hBM-MSC)-based therapy. PHD2 silencing enhanced hBM-MSC therapeutic effect in an experimental model of CLI in Nude mice, through an upregulation of HIF-1α and its target gene, VEGF-A. In addition, PHD2-transfected hBM-MSC displayed higher protection against apoptosis in vitro and increased rate of survival in the ischemic tissue, as assessed by Fluorescence Molecular Tomography. Cotransfection with HIF-1α or VEGF-A short interfering RNAs fully abrogated the beneficial effect of PHD2 silencing on the proangiogenic capacity of hBM-MSC. We finally investigated the effect of PHD2 inhibition on the revascularization potential of ischemic targeted tissues in the diabetic pathological context. Inhibition of PHD-2 with shRNAs increased postischemic neovascularization in diabetic mice with CLI. This increase was associated with an upregulation of proangiogenic and proarteriogenic factors and was blunted by concomitant silencing of HIF-1α. In conclusion, silencing of PHD2, by the transient upregulation of HIF-1α and its target gene VEGF-A, might improve the efficiency of hBM-MSC-based therapies.


Assuntos
Transplante de Células/métodos , Membro Posterior/irrigação sanguínea , Prolina Dioxigenases do Fator Induzível por Hipóxia/antagonistas & inibidores , Isquemia/terapia , Células-Tronco Mesenquimais/citologia , Inibidores de Prolil-Hidrolase/uso terapêutico , Idoso , Animais , Apoptose/fisiologia , Estudos de Casos e Controles , Modelos Animais de Doenças , Procedimentos Endovasculares/métodos , Humanos , Isquemia/enzimologia , Salvamento de Membro/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Pessoa de Meia-Idade , Transfecção
7.
Cell Mol Life Sci ; 69(23): 4041-9, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22802125

RESUMO

The non-classical Human leukocyte antigen G (HLA-G) differs from classical HLA class I molecules by its low genetic diversity, a tissue-restricted expression, the existence of seven isoforms, and immuno-inhibitory functions. Most of the known functions of HLA-G concern the membrane-bound HLA-G1 and soluble HLA-G5 isoforms, which present the typical structure of classical HLA class I molecule: a heavy chain of three globular domains α1-α2-α3 non-covalently bound to ß-2-microglobulin (B2M) and a peptide. Very little is known of the structural features and functions of other HLA-G isoforms or structural conformations other than B2M-associated HLA-G1 and HLA-G5. In the present work, we studied the capability of all isoforms to form homomultimers, and investigated whether they could bind to, and function through, the known HLA-G receptors LILRB1 and LILRB2. We report that all HLA-G isoforms may form homodimers, demonstrating for the first time the existence of HLA-G4 dimers. We also report that the HLA-G α1-α3 structure, which constitutes the extracellular part of HLA-G2 and HLA-G6, binds the LILRB2 receptor but not LILRB1. This is the first report of a receptor for a truncated HLA-G isoform. Following up on this finding, we show that the α1-α3-Fc structure coated on agarose beads is tolerogenic and capable of prolonging the survival of skin allografts in B6-mice and in a LILRB2-transgenic mouse model. This study is the first proof of concept that truncated HLA-G isoforms could be used as therapeutic agents.


Assuntos
Antígenos CD/metabolismo , Antígenos HLA-G/metabolismo , Glicoproteínas de Membrana/metabolismo , Receptores Imunológicos/metabolismo , Animais , Antígenos CD/genética , Ligação Competitiva , Western Blotting , Linhagem Celular Tumoral , Citometria de Fluxo , Sobrevivência de Enxerto , Células HEK293 , Antígenos HLA-G/química , Antígenos HLA-G/genética , Células HeLa , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Estimativa de Kaplan-Meier , Receptor B1 de Leucócitos Semelhante a Imunoglobulina , Glicoproteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Ligação Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Multimerização Proteica , Receptores Imunológicos/genética , Transplante de Pele , Transplante Homólogo , Microglobulina beta-2/metabolismo
8.
PLoS One ; 6(7): e21011, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21779321

RESUMO

HLA-G is a natural tolerogenic molecule involved in the best example of tolerance to foreign tissues there is: the maternal-fetal tolerance. The further involvement of HLA-G in the tolerance of allogeneic transplants has also been demonstrated and some of its mechanisms of action have been elucidated. For these reasons, therapeutic HLA-G molecules for tolerance induction in transplantation are actively investigated. In the present study, we studied the tolerogenic functions of three different HLA-G recombinant proteins: HLA-G heavy chain fused to ß2-microglobulin (B2M), HLA-G heavy chain fused to B2M and to the Fc portion of an immunoglobulin, and HLA-G alpha-1 domain either fused to the Fc part of an immunoglobulin or as a synthetic peptide. Our results demonstrate the tolerogenic function of B2M-HLA-G fusion proteins, and especially of B2M-HLA-G5, which were capable of significantly delaying allogeneic skin graft rejection in a murine in vivo transplantation model. The results from our studies suggest that HLA-G recombinant proteins are relevant candidates for tolerance induction in human transplantation.


Assuntos
Antígenos HLA/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Animais , Western Blotting , Ensaio de Imunoadsorção Enzimática , Antígenos HLA/genética , Antígenos HLA/imunologia , Antígenos HLA-G , Células HeLa , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Imunoglobulinas/genética , Imunoglobulinas/imunologia , Imunoglobulinas/metabolismo , Imunoprecipitação , Camundongos , Camundongos Endogâmicos C57BL , Peptídeos/genética , Peptídeos/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Transplante de Pele/imunologia
9.
Cell Res ; 20(11): 1239-51, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20877312

RESUMO

Trogocytosis is a rapid transfer between cells of membranes and associated proteins. Trogocytic exchanges have been investigated between different cell types, mainly in two-cell systems, involving one donor and one acceptor cell type. Here, we studied trogocytosis in a more complex system, involving not only several immune cell subsets but also multiple tumor cells. We show that CD4(+) T cells, CD8(+) T cells and monocytes can acquire membrane patches and the intact proteins they contain from different tumor cells by multiple simultaneous trogocytoses. The trogocytic capabilities of CD4(+) and CD8(+) T cells were found to be similar, but inferior to that of autologous monocytes. Activated peripheral-blood mononuclear cells (PBMCs) may also exchange membranes between themselves in an all-autologous system. For this reason, monocytes are capable of acquiring membranes from multiple tumor cell sources, and transfer them again to autologous T cells, along with some of their own membranes (serial trogocytosis). Our data illustrate the extent of membrane exchanges between autologous activated immune effector cells and their environment, and how the cellular content of the local environment, including "bystander" cells, may impact the functions of immune effector cells.


Assuntos
Membrana Celular/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Comunicação Celular/imunologia , Membrana Celular/imunologia , Citometria de Fluxo , Antígenos HLA/genética , Antígenos HLA/metabolismo , Antígenos HLA-G , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Monócitos/imunologia , Monócitos/metabolismo
10.
Cell Mol Life Sci ; 67(7): 1133-45, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20238479

RESUMO

Trogocytosis is the uptake of membranes from one cell by another. Trogocytosis has been demonstrated for monocytes, B cells, T cells, and NK cells. The acquisition of the tolerogenic molecule HLA-G by T cells and NK cells makes them behave as regulatory cells. We investigated here whether HLA-G, which is expressed by tumor cells in vivo, could be acquired by monocytes and if this transfer could have functional consequences. We demonstrate that resting, and even more so, activated monocytes efficiently acquire membrane-bound HLA-G from HLA-G tumor cells by trogocytosis. However, we demonstrate that HLA-G quickly disappears from the surface of the monocytes in contrast to the HLA-G acquired by T cells. Consequently, HLA-G(acq+) monocytes do not reliably inhibit the on-going proliferation of autologous activated T cells and do not inhibit their cytokine production. Thus, we show that the acquirer cell may control the functional outcome of trogocytosis.


Assuntos
Membrana Celular/metabolismo , Antígenos HLA/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Monócitos/imunologia , Linfócitos T/imunologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Linfócitos B/fisiologia , Transporte Biológico , Linhagem Celular Tumoral , Proliferação de Células , Citometria de Fluxo , Proteínas de Fluorescência Verde/metabolismo , Antígenos HLA-G , Humanos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Ativação Linfocitária , Monócitos/metabolismo , Transporte Proteico , Linfócitos T/metabolismo
11.
Hum Immunol ; 69(11): 700-7, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18817832

RESUMO

Regulatory cells play a crucial role in the maintenance of the immune homeostasis and in pathologic conditions such as those involving transplantations, autoimmune diseases, infections, and cancers. The regulatory cells block the function of other effector cells and can induce the formation of other regulatory cells. Human leukocyte antigen (HLA)-G is a nonclassic class I molecule that functions as an immune-tolerogenic molecule with restricted tissue expression. Numerous studies have highlighted the role of HLA-G in the context of transplantation, cancer, autoimmunity, and hematologic diseases. HLA-G has a direct inhibitory effect on immune responses but there is increasing evidence that it also has a long term immunomodulatory effect and can induce the generation of suppressor/regulatory cells. In this article we review the different natures, functions, and significance of the various types of HLA-G-dependent suppressor cells.


Assuntos
Antígenos HLA/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Homeostase/imunologia , Tolerância Imunológica , Doenças Autoimunes/imunologia , Antígenos HLA-G , Humanos , Infecções/imunologia , Neoplasias/imunologia , Imunologia de Transplantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA