Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Data ; 11(1): 321, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38548727

RESUMO

Flexible bronchoscopy has revolutionized respiratory disease diagnosis. It offers direct visualization and detection of airway abnormalities, including lung cancer lesions. Accurate identification of airway lesions during flexible bronchoscopy plays an important role in the lung cancer diagnosis. The application of artificial intelligence (AI) aims to support physicians in recognizing anatomical landmarks and lung cancer lesions within bronchoscopic imagery. This work described the development of BM-BronchoLC, a rich bronchoscopy dataset encompassing 106 lung cancer and 102 non-lung cancer patients. The dataset incorporates detailed localization and categorical annotations for both anatomical landmarks and lesions, meticulously conducted by senior doctors at Bach Mai Hospital, Vietnam. To assess the dataset's quality, we evaluate two prevalent AI backbone models, namely UNet++ and ESFPNet, on the image segmentation and classification tasks with single-task and multi-task learning paradigms. We present BM-BronchoLC as a reference dataset in developing AI models to assist diagnostic accuracy for anatomical landmarks and lung cancer lesions in bronchoscopy data.


Assuntos
Broncoscopia , Neoplasias Pulmonares , Humanos , Inteligência Artificial , Neoplasias Pulmonares/diagnóstico por imagem , Tórax/diagnóstico por imagem , Pontos de Referência Anatômicos/diagnóstico por imagem
2.
Exp Mol Med ; 51(2): 1-14, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30755583

RESUMO

Vascular regeneration in ischemic hearts has been considered a target for new therapeutic strategies. It has been reported that ETV2 is essential for vascular development, injury-induced neovascularization and direct cell reprogramming of non-endothelial cells into endothelial cells. Thus, the objective of this study was to explore the therapeutic potential of ETV2 in murine models of myocardial infarction in vivo. Direct myocardial delivery of lentiviral ETV2 into rodents undergoing myocardial infarction dramatically upregulated the expression of markers for angiogenesis as well as anti-fibrosis and anti-inflammatory factors in vivo. Consistent with these findings, echocardiography showed significantly improved cardiac function in hearts with induced myocardial infarction upon ETV2 injection compared to that in the control virus-injected group as determined by enhanced ejection fraction and fractional shortening. In addition, ETV2-injected hearts were protected against massive fibrosis with a remarkable increase in capillary density. Interestingly, major fractions of capillaries were stained positive for ETV2. In addition, ECs infected with ETV2 showed enhanced proliferation, suggesting a direct role of ETV2 in vascular regeneration in diseased hearts. Furthermore, culture media from ETV2-overexpressing cardiac fibroblasts promoted endothelial cell migration based on scratch assay. Importantly, intramyocardial injection of the adeno-associated virus form of ETV2 into rat hearts with induced myocardial infarction designed for clinical applicability consistently resulted in significant augmentation of cardiac function. We provide compelling evidence that ETV2 has a robust effect on vascular regeneration and enhanced cardiac repair after myocardial infarction, highlighting a potential therapeutic function of ETV2 as an efficient means to treat failing hearts.


Assuntos
Infarto do Miocárdio/genética , Infarto do Miocárdio/fisiopatologia , Neovascularização Fisiológica/genética , Fatores de Transcrição/genética , Transdução Genética , Animais , Linhagem Celular , Movimento Celular , Proliferação de Células , Dependovirus/genética , Modelos Animais de Doenças , Ecocardiografia , Células Endoteliais/metabolismo , Fibroblastos/metabolismo , Fibrose , Fluordesoxiglucose F18 , Expressão Gênica , Vetores Genéticos/genética , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Tomografia por Emissão de Pósitrons , Ratos , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA