Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 29(28): 42074-42089, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35129745

RESUMO

Single-use plastic waste is gradually considered a potential material for circular economy. Ion exchange resin obtained from polystyrene waste by sulfonating with H2SO4 was used for heavy metal removal from electroplating wastewater. Batch mode experiments of Cu2+, Zn2+, and Cd2+ were carried out to determine effect of pH, initial concentration, equilibrium time, and the isotherm and kinetic parameters; the stability of the resin in continuous operation was then evaluated. Finally, the longevity of the resin after being exhausted was explored. The results indicated that at pH 6, a pseudo-second-order kinetic model was applicable to describe adsorption of studied heavy metals by sulfonated polystyrene with adsorption capacities of 7.48 mg Cu2+/g, 7.23 mg Zn2+/g, and 6.50 mg Cd2+/g, respectively. Moreover, the ion exchange process between sulfonated polystyrene resin and Cu2+, Zn2+, Cd2+ ions followed the Langmuir isotherm adsorption model with R2 higher than 96%. The continuous fixed-bed column in conditions of a sulfonated polystyrene mass of 500 g, and a flow rate of 2.2 L/h was investigated for an influent solution with known initial concentration of 20 mg/L. Thomas and Yoon-Nelson models were tested with regression analysis. When being exhausted, the sulfonated polystyrene was regenerated by NaCl in 10 min with ratio 5 mL of NaCl 2 M per 1 g saturated resins. After 4 times regeneration, the heavy metal removal efficiency of sulfonated polystyrene was reduced to 50%. These aforementioned results can figure out that by sulfonating polystyrene waste to synthesize ion exchanging materials, this method is technically efficient and environmentally friendly to achieve sustainability.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Adsorção , Cádmio/análise , Concentração de Íons de Hidrogênio , Cinética , Metais Pesados/análise , Plásticos , Poliestirenos/análise , Cloreto de Sódio , Águas Residuárias/análise , Poluentes Químicos da Água/análise
2.
J Environ Qual ; 48(3): 670-676, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31180432

RESUMO

Silicic acid and soluble Fe are among the most abundant components in acid mine drainage. During the oxidation of Fe(II), the interaction between silicic acid and freshly formed Fe oxides might change the colloidal dynamics, altering surface charge properties. However, the effects of silicic acid on colloidal Fe oxides formed from acid mine drainage are not fully understood. In this work, we examined the colloidal dynamics of freshly formed Fe oxides in synthetic acid mine drainage (prepared from FeSO solution) under the effect of silicic acid as a function of changes in pH and ionic strength. The results demonstrate that through adsorption, silicic acid progressively slows oxidation and enhances the dispersion of freshly formed Fe oxides by shifting the surface charge toward more negative values. This effect was most prominent between pH 5 and 9. The current results demonstrate that silicic acid enhances the dispersion and transport of freshly formed Fe oxides and suggest that aggregation-based techniques for the treatment of Fe-rich drainage may require further consideration of this effect.


Assuntos
Ferro , Ácido Silícico , Compostos Férricos , Oxirredução , Óxidos
3.
Front Plant Sci ; 10: 475, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31057581

RESUMO

MicroRNAs (miRNAs) control expression of endogenous target genes through transcript cleavage or translational inhibition. Legume plants can form a specialized organ, the nodule, through interaction with nitrogen fixing soil bacteria. To understand the regulatory roles of miRNAs in the nodulation process, we functionally validated gma-miR171o and gma-miR171q and their target genes in soybean. These two miRNA sequences are identical in sequence but their miRNA genes are divergent and show unique, tissue-specific expression patterns. The expression levels of the two miRNAs are negatively correlated with that of their target genes. Ectopic expression of these miRNAs in transgenic hairy roots resulted in a significant reduction in nodule formation. Both gma-miR171o and gma-miR171q target members of the GRAS transcription factor superfamily, namely GmSCL-6 and GmNSP2. Transient interaction of miRNAs and their target genes in tobacco cells further confirmed their cleavage activity. The results suggest that gma-miR171o and gma-miR171q regulate GmSCL-6 and GmNSP2, which in turn, influence expression of the Nodule inception (NIN), Early Nodulin 40 (ENOD40), and Ethylene Response Factor Required for Nodulation (ERN) genes during the Bradyrhizobium japonicum-soybean nodulation process. Collectively, our data suggest a role for two miRNAs, gma-miR171o and gma-miR171q, in regulating the spatial and temporal aspects of soybean nodulation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA