Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3271, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627373

RESUMO

Selective binding of TCR-like antibodies that target a single tumour-specific peptide antigen presented by human leukocyte antigens (HLA) is the absolute prerequisite for their therapeutic suitability and patient safety. To date, selectivity assessment has been limited to peptide library screening and predictive modeling. We developed an experimental platform to de novo identify interactomes of TCR-like antibodies directly in human tissues using mass spectrometry. As proof of concept, we confirm the target epitope of a MAGE-A4-specific TCR-like antibody. We further determine cross-reactive peptide sequences for ESK1, a TCR-like antibody with known off-target activity, in human liver tissue. We confirm off-target-induced T cell activation and ESK1-mediated liver spheroid killing. Off-target sequences feature an amino acid motif that allows a structural groove-coordination mimicking that of the target peptide, therefore allowing the interaction with the engager molecule. We conclude that our strategy offers an accurate, scalable route for evaluating the non-clinical safety profile of TCR-like antibody therapeutics prior to first-in-human clinical application.


Assuntos
Anticorpos , Peptídeos , Humanos , Linhagem Celular Tumoral , Peptídeos/química , Antígenos de Neoplasias , Receptores de Antígenos de Linfócitos T/metabolismo
2.
Respir Res ; 21(1): 25, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31941499

RESUMO

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a chronic fatal lung disease without a cure and new drug strategies are urgently needed. Differences in behavior between diseased and healthy cells are well known and drug response can be different between cells isolated from IPF patients and controls. The macrolide Azithromycin (AZT) has anti-inflammatory and immunomodulatory properties. Recently anti-fibrotic effects have been described. However, the anti-fibrotic effects on primary IPF-fibroblasts (FB) directly compared to control-FB are unknown. We hypothesized that IPF-FB react differently to AZT in terms of anti-fibrotic effects. METHODS: Primary normal human lung and IPF-FB were exposed to TGF-ß (5 ng/ml), Azithromycin (50 µM) alone or in combination prior to gene expression analysis. Pro-collagen Iα1 secretion was assessed by ELISA and protein expression by western blot (αSMA, Fibronectin, ATP6V1B2, LC3 AB (II/I), p62, Bcl-xL). Microarray analysis was performed to screen involved genes and pathways after Azithromycin treatment in control-FB. Apoptosis and intraluminal lysosomal pH were analyzed by flow cytometry. RESULTS: AZT significantly reduced collagen secretion in TGF-ß treated IPF-FB compared to TGF-ß treatment alone, but not in control-FB. Pro-fibrotic gene expression was similarly reduced after AZT treatment in IPF and control-FB. P62 and LC3II/I western blot revealed impaired autophagic flux after AZT in both control and IPF-FB with significant increase of LC3II/I after AZT in control and IPF-FB, indicating enhanced autophagy inhibition. Early apoptosis was significantly higher in TGF-ß treated IPF-FB compared to controls after AZT. Microarray analysis of control-FB treated with AZT revealed impaired lysosomal pathways. The ATPase and lysosomal pH regulator ATP6V0D2 was significantly less increased after additional AZT in IPF-FB compared to controls. Lysosomal function was impaired in both IPF and control FB, but pH was significantly more increased in TGF-ß treated IPF-FB. CONCLUSION: We report different treatment responses after AZT with enhanced anti-fibrotic and pro-apoptotic effects in IPF compared to control-FB. Possibly impaired lysosomal function contributes towards these effects. In summary, different baseline cell phenotype and behavior of IPF and control cells contribute to enhanced anti-fibrotic and pro-apoptotic effects in IPF-FB after AZT treatment and strengthen its role as a new potential anti-fibrotic compound, that should further be evaluated in clinical studies.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Azitromicina/farmacologia , Fibroblastos/efeitos dos fármacos , Fibrose Pulmonar Idiopática , Pulmão/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Apoptose/fisiologia , Azitromicina/uso terapêutico , Células Cultivadas , Fibroblastos/patologia , Humanos , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/patologia , Pulmão/patologia , Fator de Crescimento Transformador beta/farmacologia
3.
Neoplasia ; 21(2): 185-196, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30591423

RESUMO

Cell lines are essential tools to standardize and compare experimental findings in basic and translational cancer research. The current dogma states that cancer stem cells feature an increased tumor initiation capacity and are also chemoresistant. Here, we identified and comprehensively characterized three morphologically distinct cellular subtypes in the non-small cell lung cancer cell line A549 and challenge the current cancer stem cell dogma. Subtype-specific cellular morphology is maintained during short-term culturing, resulting in the formation of holoclonal, meroclonal, and paraclonal colonies. A549 holoclone cells were characterized by an epithelial and stem-like phenotype, paraclone cells featured a mesenchymal phenotype, whereas meroclone cells were phenotypically intermediate. Cell-surface marker expression of subpopulations changed over time, indicating an active epithelial-to-mesenchymal transition (EMT), in vitro and in vivo. EMT has been associated with the overexpression of the immunomodulators PD-L1 and PD-L2, which were 37- and 235-fold overexpressed in para- versus holoclone cells, respectively. We found that DNA methylation is involved in epigenetic regulation of marker expression. Holoclone cells were extremely sensitive to cisplatin and radiotherapy in vitro, whereas paraclone cells were highly resistant. However, inhibition of the receptor tyrosine kinase AXL, whose expression is associated with an EMT, specifically targeted the otherwise highly resistant paraclone cells. Xenograft tumor formation capacity was 24- and 269-fold higher in holo- than mero- and paraclone cells, respectively. Our results show that A549 subpopulations might serve as a unique system to explore the network of stemness, cellular plasticity, tumor initiation capacity, invasive and metastatic potential, and chemo/radiotherapy resistance.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/patologia , Transformação Celular Neoplásica , Transição Epitelial-Mesenquimal , Neoplasias Pulmonares/patologia , Células-Tronco Neoplásicas/metabolismo , Células A549 , Animais , Biomarcadores , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica/genética , Dano ao DNA , Metilação de DNA , Modelos Animais de Doenças , Transição Epitelial-Mesenquimal/genética , Perfilação da Expressão Gênica , Humanos , Imunofenotipagem , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Camundongos , Células-Tronco Neoplásicas/patologia , Transcriptoma
4.
Sci Rep ; 8(1): 14359, 2018 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-30254327

RESUMO

Organs-on-chips have the potential to improve drug development efficiency and decrease the need for animal testing. For the successful integration of these devices in research and industry, they must reproduce in vivo contexts as closely as possible and be easy to use. Here, we describe a 'breathing' lung-on-chip array equipped with a passive medium exchange mechanism that provide an in vivo-like environment to primary human lung alveolar cells (hAEpCs) and primary lung endothelial cells. This configuration allows the preservation of the phenotype and the function of hAEpCs for several days, the conservation of the epithelial barrier functionality, while enabling simple sampling of the supernatant from the basal chamber. In addition, the chip design increases experimental throughput and enables trans-epithelial electrical resistance measurements using standard equipment. Biological validation revealed that human primary alveolar type I (ATI) and type II-like (ATII) epithelial cells could be successfully cultured on the chip over multiple days. Moreover, the effect of the physiological cyclic strain showed that the epithelial barrier permeability was significantly affected. Long-term co-culture of primary human lung epithelial and endothelial cells demonstrated the potential of the lung-on-chip array for reproducible cell culture under physiological conditions. Thus, this breathing lung-on-chip array, in combination with patients' primary ATI, ATII, and lung endothelial cells, has the potential to become a valuable tool for lung research, drug discovery and precision medicine.


Assuntos
Alvéolos Pulmonares/citologia , Respiração , Análise Serial de Tecidos/métodos , Células Epiteliais/citologia , Desenho de Equipamento , Humanos , Alvéolos Pulmonares/fisiologia , Reprodutibilidade dos Testes , Análise Serial de Tecidos/instrumentação
5.
Angiogenesis ; 21(4): 861-871, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29967964

RESUMO

Idiopathic pulmonary fibrosis is characterized by a progressive scarring and stiffening of the peripheral lung tissue that decreases lung function. Over the course of the disease, the lung microvasculature undergoes extensive remodeling. There is increased angiogenesis around fibrotic foci and an absence of microvessels within the foci. To elucidate how the anti-fibrotic drug nintedanib acts on vascular remodeling, we used an in vitro model of perfusable microvessels made with primary endothelial cells and primary lung fibroblasts in a microfluidic chip. The microvasculature model allowed us to study the impact of nintedanib on permeability, vascularized area, and cell-cell interactions. The anti-vasculogenic impact of nintedanib was visible at the minimal concentrations of 10 nM, showing a significant increase in vessel permeability. Furthermore, nintedanib decreased microvessel density, diameter, and influenced fibroblast organization around endothelial microvessels. These results show that nintedanib acts on the endothelial network formation and endothelial-perivascular interactions. Advanced in vitro microvasculature models may thus serve to pinpoint the mechanistic effect of anti-fibrotic drugs on the microvascular remodeling in 3D and refine findings from animal studies.


Assuntos
Fibroblastos , Fibrose Pulmonar Idiopática , Indóis/farmacologia , Pulmão , Microvasos , Remodelação Vascular/efeitos dos fármacos , Técnicas de Cultura de Células , Técnicas de Cocultura , Relação Dose-Resposta a Droga , Fibroblastos/metabolismo , Fibroblastos/patologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/patologia , Dispositivos Lab-On-A-Chip , Pulmão/irrigação sanguínea , Pulmão/metabolismo , Pulmão/patologia , Microvasos/metabolismo , Microvasos/patologia
6.
Biochim Biophys Acta ; 1863(8): 2124-34, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27155084

RESUMO

The molecular basis involving adsorption of pulmonary surfactant at the respiratory air-liquid interface and the specific roles of the surfactant proteins SP-B and SP-C in this process have not been completely resolved. The reasons might be found in the largely unknown structural assembly in which surfactant lipids and proteins are released from alveolar type II cells, and the difficulties to sample, manipulate and visualize the adsorption of these micron-sized particles at an air-liquid interface under appropriate physiological conditions. Here, we introduce several approaches to overcome these problems. First, by immunofluorescence we could demonstrate the presence of SP-B and SP-C on the surface of exocytosed surfactant particles. Second, by sampling the released particles and probing their adsorptive capacity we could demonstrate a remarkably high rate of interfacial adsorption, whose rate and extent was dramatically affected by treatment with antibodies against SP-B and SP-C. The effect of both antibodies was additive and specific. Third, direct microscopy of an inverted air-liquid interface revealed that the blocking effect is due to a stabilization of the released particles when contacting the air-liquid interface, precluding their transformation and the formation of surface films. We conclude that SP-B and SP-C are acting as essential, preformed molecular keys in the initial stages of surfactant unpacking and surface film formation. We further propose that surfactant activation might be transduced by a conformational change of the surfactant proteins upon contact with surface forces acting on the air-liquid interface.


Assuntos
Células Epiteliais Alveolares/metabolismo , Proteína B Associada a Surfactante Pulmonar/fisiologia , Proteína C Associada a Surfactante Pulmonar/fisiologia , Adsorção , Células Epiteliais Alveolares/efeitos dos fármacos , Células Epiteliais Alveolares/ultraestrutura , Animais , Compostos de Boro , Células Cultivadas , Exocitose , Corantes Fluorescentes , Compostos Heterocíclicos com 3 Anéis , Interações Hidrofóbicas e Hidrofílicas , Microscopia Confocal , Organelas/efeitos dos fármacos , Organelas/metabolismo , Proteína B Associada a Surfactante Pulmonar/antagonistas & inibidores , Proteína B Associada a Surfactante Pulmonar/farmacologia , Proteína C Associada a Surfactante Pulmonar/antagonistas & inibidores , Proteína C Associada a Surfactante Pulmonar/farmacologia , Surfactantes Pulmonares/química , Ratos , Ratos Sprague-Dawley , Propriedades de Superfície , Tensão Superficial
7.
PLoS One ; 9(1): e84926, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24465451

RESUMO

Leucine-rich repeat kinase 2 (LRRK2) is known to play a role in the pathogenesis of various diseases including Parkinson disease, morbus Crohn, leprosy and cancer. LRRK2 is suggested to be involved in a number of cell biological processes such as vesicular trafficking, transcription, autophagy and lysosomal pathways. Recent histological studies of lungs of LRRK2 knock-out (LRRK2 -/-) mice revealed significantly enlarged lamellar bodies (LBs) in alveolar type II (ATII) epithelial cells. LBs are large, lysosome-related storage organelles for pulmonary surfactant, which is released into the alveolar lumen upon LB exocytosis. In this study we used high-resolution, subcellular live-cell imaging assays to investigate whether similar morphological changes can be observed in primary ATII cells from LRRK2 -/- rats and whether such changes result in altered LB exocytosis. Similarly to the report in mice, ATII cells from LRRK2 -/- rats contained significantly enlarged LBs resulting in a >50% increase in LB volume. Stimulation of ATII cells with ATP elicited LB exocytosis in a significantly increased proportion of cells from LRRK2 -/- animals. LRRK2 -/- cells also displayed increased intracellular Ca(2+) release upon ATP treatment and significant triggering of LB exocytosis. These findings are in line with the strong Ca(2+)-dependence of LB fusion activity and suggest that LRRK2 -/- affects exocytic response in ATII cells via modulating intracellular Ca(2+) signaling. Post-fusion regulation of surfactant secretion was unaltered. Actin coating of fused vesicles and subsequent vesicle compression to promote surfactant expulsion were comparable in cells from LRRK2 -/- and wt animals. Surprisingly, surfactant (phospholipid) release from LRRK2 -/- cells was reduced following stimulation of LB exocytosis possibly due to impaired LB maturation and surfactant loading of LBs. In summary our results suggest that LRRK2 -/- affects LB size, modulates intracellular Ca(2+) signaling and promotes LB exocytosis upon stimulation of ATII cells with ATP.


Assuntos
Sinalização do Cálcio , Exocitose/genética , Organelas/metabolismo , Proteínas Serina-Treonina Quinases/deficiência , Alvéolos Pulmonares/metabolismo , Surfactantes Pulmonares/metabolismo , Trifosfato de Adenosina/farmacologia , Animais , Biomarcadores/metabolismo , Cálcio/metabolismo , Exocitose/efeitos dos fármacos , Deleção de Genes , Expressão Gênica , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Organelas/efeitos dos fármacos , Organelas/ultraestrutura , Proteínas Serina-Treonina Quinases/genética , Alvéolos Pulmonares/patologia , Ratos , Vesículas Secretórias/efeitos dos fármacos , Vesículas Secretórias/metabolismo , Vesículas Secretórias/ultraestrutura
8.
FASEB J ; 27(4): 1772-83, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23307836

RESUMO

Two fundamental mechanisms within alveoli are essential for lung function: regulated fluid transport and secretion of surfactant. Surfactant is secreted via exocytosis of lamellar bodies (LBs) in alveolar type II (ATII) cells. We recently reported that LB exocytosis results in fusion-activated cation entry (FACE) via P2X4 receptors on LBs. We propose that FACE, in addition to facilitating surfactant secretion, modulates alveolar fluid transport. Correlative fluorescence and atomic force microscopy revealed that FACE-dependent water influx correlated with individual fusion events in rat primary ATII cells. Moreover, ATII cell monolayers grown at air-liquid interface exhibited increases in short-circuit current (Isc) on stimulation with ATP or UTP. Both are potent agonists for LB exocytosis, but only ATP activates FACE. ATP, not UTP, elicited additional fusion-dependent increases in Isc. Overexpressing dominant-negative P2X4 abrogated this effect by ∼50%, whereas potentiating P2X4 lead to ∼80% increase in Isc. Finally, we monitored changes in alveolar surface liquid (ASL) on ATII monolayers by confocal microscopy. Only stimulation with ATP, not UTP, led to a significant, fusion-dependent, 20% decrease in ASL, indicating apical-to-basolateral fluid transport across ATII monolayers. Our data support the first direct link between LB exocytosis, regulation of surfactant secretion, and transalveolar fluid resorption via FACE.


Assuntos
Trifosfato de Adenosina/farmacologia , Fusão de Membrana/efeitos dos fármacos , Alvéolos Pulmonares/metabolismo , Surfactantes Pulmonares/metabolismo , Receptores Purinérgicos P2X4/metabolismo , Animais , Transporte Biológico/efeitos dos fármacos , Cátions/metabolismo , Exocitose/fisiologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Microscopia de Força Atômica/métodos , Alvéolos Pulmonares/citologia , Ratos , Ratos Sprague-Dawley , Uridina Trifosfato/farmacologia
9.
Respir Res ; 11: 52, 2010 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-20459693

RESUMO

BACKGROUND: Perfluorocarbons (PFC) are used to improve gas exchange in diseased lungs. PFC have been shown to affect various cell types. Thus, effects on alveolar type II (ATII) cells and surfactant metabolism can be expected, data, however, are controversial. OBJECTIVE: The study was performed to test two hypotheses: (I) the effects of PFC on surfactant exocytosis depend on their respective vapor pressures; (II) different pathways of surfactant exocytosis are affected differently by PFC. METHODS: Isolated ATII cells were exposed to two PFC with different vapor pressures and spontaneous surfactant exocytosis was measured. Furthermore, surfactant exocytosis was stimulated by either ATP, PMA or ionomycin. The effects of PFC on cell morphology, cellular viability, endocytosis, membrane permeability and fluidity were determined. RESULTS: The spontaneous exocytosis was reduced by PFC, however, the ATP and PMA stimulated exocytosis was slightly increased by PFC with high vapor pressure. In contrast, Ionomycin-induced exocytosis was decreased by PFC with low vapor pressure. Cellular uptake of FM 1-43 - a marker of membrane integrity - was increased. However, membrane fluidity, endocytosis and viability were not affected by PFC incubation. CONCLUSIONS: We conclude that PFC effects can be explained by modest, unspecific interactions with the plasma membrane rather than by specific interactions with intracellular targets.


Assuntos
Células Epiteliais Alveolares/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Exocitose/efeitos dos fármacos , Fluorocarbonos/farmacologia , Proteínas Associadas a Surfactantes Pulmonares/metabolismo , Trifosfato de Adenosina/metabolismo , Células Epiteliais Alveolares/metabolismo , Animais , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Permeabilidade da Membrana Celular/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Ionomicina/farmacologia , Masculino , Fluidez de Membrana/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Acetato de Tetradecanoilforbol/farmacologia , Fatores de Tempo , Pressão de Vapor
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA