Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Vis Exp ; (206)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38738885

RESUMO

Adeno-associated viral vectors (AAVs) are a remarkable tool for investigating the central nervous system (CNS). Innovative capsids, such as AAV.PHP.eB, demonstrate extensive transduction of the CNS by intravenous injection in mice. To achieve comparable transduction, a 100-fold higher titer (minimally 1 x 1011 genome copies/mouse) is needed compared to direct injection in the CNS parenchyma. In our group, AAV production, including AAV.PHP.eB relies on adherent HEK293T cells and the triple transfection method. Achieving high yields of AAV with adherent cells entails a labor- and material-intensive process. This constraint prompted the development of a protocol for suspension-based cell culture in conical tubes. AAVs generated in adherent cells were compared to the suspension production method. Culture in suspension using transfection reagents Polyethylenimine or TransIt were compared. AAV vectors were purified by iodixanol gradient ultracentrifugation followed by buffer exchange and concentration using a centrifugal filter. With the adherent method, we achieved an average of 2.6 x 1012 genome copies (GC) total, whereas the suspension method and Polyethylenimine yielded 7.7 x 1012 GC in total, and TransIt yielded 2.4 x 1013 GC in total. There is no difference in in vivo transduction efficiency between vectors produced with adherent compared to the suspension cell system. In summary, a suspension HEK293 cell based AAV production protocol is introduced, resulting in a reduced amount of time and labor needed for vector production while achieving 3 to 9 times higher yields using components available from commercial vendors for research purposes.


Assuntos
Dependovirus , Vetores Genéticos , Humanos , Células HEK293 , Vetores Genéticos/genética , Dependovirus/genética , Transfecção/métodos , Camundongos , Animais
2.
Alzheimers Res Ther ; 13(1): 45, 2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33597019

RESUMO

BACKGROUND: Dysregulation of ceramide and sphingomyelin levels have been suggested to contribute to the pathogenesis of Alzheimer's disease (AD). Ceramide transfer proteins (CERTs) are ceramide carriers which are crucial for ceramide and sphingomyelin balance in cells. Extracellular forms of CERTs co-localize with amyloid-ß (Aß) plaques in AD brains. To date, the significance of these observations for the pathophysiology of AD remains uncertain. METHODS: A plasmid expressing CERTL, the long isoform of CERTs, was used to study the interaction of CERTL with amyloid precursor protein (APP) by co-immunoprecipitation and immunofluorescence in HEK cells. The recombinant CERTL protein was employed to study interaction of CERTL with amyloid-ß (Aß), Aß aggregation process in presence of CERTL, and the resulting changes in Aß toxicity in neuroblastoma cells. CERTL was overexpressed in neurons by adeno-associated virus (AAV) in a mouse model of familial AD (5xFAD). Ten weeks after transduction, animals were challenged with behavior tests for memory, anxiety, and locomotion. At week 12, brains were investigated for sphingolipid levels by mass spectrometry, plaques, and neuroinflammation by immunohistochemistry, gene expression, and/or immunoassay. RESULTS: Here, we report that CERTL binds to APP, modifies Aß aggregation, and reduces Aß neurotoxicity in vitro. Furthermore, we show that intracortical injection of AAV, mediating the expression of CERTL, decreases levels of ceramide d18:1/16:0 and increases sphingomyelin levels in the brain of male 5xFAD mice. CERTL in vivo over-expression has a mild effect on animal locomotion, decreases Aß formation, and modulates microglia by decreasing their pro-inflammatory phenotype. CONCLUSION: Our results demonstrate a crucial role of CERTL in regulating ceramide levels in the brain, in amyloid plaque formation and neuroinflammation, thereby opening research avenues for therapeutic targets of AD and other neurodegenerative diseases.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Encéfalo/metabolismo , Ceramidas , Modelos Animais de Doenças , Inflamação , Masculino , Camundongos , Camundongos Transgênicos , Placa Amiloide
3.
Gene Ther ; 28(1-2): 56-74, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32576975

RESUMO

Adeno-associated viral vectors are widely used as vehicles for gene transfer to the nervous system. The promoter and viral vector serotype are two key factors that determine the expression dynamics of the transgene. A previous comparative study has demonstrated that AAV1 displays efficient transduction of layer V corticospinal neurons, but the optimal promoter for transgene expression in corticospinal neurons has not been determined yet. In this paper, we report a side-by-side comparison between four commonly used promoters: the short CMV early enhancer/chicken ß actin (sCAG), human cytomegalovirus (hCMV), mouse phosphoglycerate kinase (mPGK) and human synapsin (hSYN) promoter. Reporter constructs with each of these promoters were packaged in AAV1, and were injected in the sensorimotor cortex of rats and mice in order to transduce the corticospinal tract. Transgene expression levels and the cellular transduction profile were examined after 6 weeks. The AAV1 vectors harbouring the hCMV and sCAG promoters resulted in transgene expression in neurons, astrocytes and oligodendrocytes. The mPGK and hSYN promoters directed the strongest transgene expression. The mPGK promoter did drive expression in cortical neurons and oligodendrocytes, while transduction with AAV harbouring the hSYN promoter resulted in neuron-specific expression, including perineuronal net expressing interneurons and layer V corticospinal neurons. This promoter comparison study contributes to improve transgene delivery into the brain and spinal cord. The optimized transduction of the corticospinal tract will be beneficial for spinal cord injury research.


Assuntos
Dependovirus , Tratos Piramidais , Animais , Dependovirus/genética , Vetores Genéticos/genética , Camundongos , Regiões Promotoras Genéticas , Ratos , Transdução Genética , Transgenes
4.
Methods Mol Biol ; 1715: 3-17, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29188502

RESUMO

Adeno-associated viral vectors have numerous applications in neuroscience, including the study of gene function in health and disease, targeting of light-sensitive proteins to anatomically distinct sets of neurons to manipulate neuronal activity (optogenetics), and the delivery of fluorescent protein to study anatomical connectivity in the brain. Moreover several phase I/II clinical trials for gene therapy of eye and brain diseases with adeno-associated viral vectors have shown that these vectors are well tolerated by human patients. In this chapter we describe a detailed protocol for the small scale production of recombinant adeno-associated viral vectors. This protocol can be executed by investigators with experience in cell culture and molecular biological techniques in any well-equipped molecular neurobiology laboratory. With this protocol we typically obtain research batches of 100-200 µL that range in titer from 5 × 1012 to 2 × 1013 genomic copies/mL.


Assuntos
Encefalopatias/terapia , Dependovirus/genética , Técnicas de Transferência de Genes , Terapia Genética/métodos , Vetores Genéticos , Encefalopatias/genética , Oftalmopatias/genética , Oftalmopatias/terapia , Células HEK293 , Humanos , Injeções Intraoculares/métodos , Sistema Nervoso/metabolismo , Plasmídeos
5.
J Neurosci ; 37(39): 9361-9379, 2017 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-28842419

RESUMO

Repulsive guidance molecule member a (RGMa) is a membrane-associated or released guidance molecule that is involved in axon guidance, cell patterning, and cell survival. In our previous work, we showed that RGMa is significantly upregulated in the substantia nigra of patients with Parkinson's disease. Here we demonstrate the expression of RGMa in midbrain human dopaminergic (DA) neurons. To investigate whether RGMa might model aspects of the neuropathology of Parkinson's disease in mouse, we targeted RGMa to adult midbrain dopaminergic neurons using adeno-associated viral vectors. Overexpression of RGMa resulted in a progressive movement disorder, including motor coordination and imbalance, which is typical for a loss of DA release in the striatum. In line with this, RGMa induced selective degeneration of dopaminergic neurons in the substantia nigra (SN) and affected the integrity of the nigrostriatal system. The degeneration of dopaminergic neurons was accompanied by a strong microglia and astrocyte activation. The behavioral, molecular, and anatomical changes induced by RGMa in mice are remarkably similar to the clinical and neuropathological hallmarks of Parkinson's disease. Our data indicate that dysregulation of RGMa plays an important role in the pathology of Parkinson's disease, and antibody-mediated functional interference with RGMa may be a disease modifying treatment option.SIGNIFICANCE STATEMENT Parkinson's disease (PD) is a neurodegenerative disease characterized by severe motor dysfunction due to progressive degeneration of mesencephalic dopaminergic (DA) neurons in the substantia nigra. To date, there is no regenerative treatment available. We previously showed that repulsive guidance molecule member a (RGMa) is upregulated in the substantia nigra of PD patients. Adeno-associated virus-mediated targeting of RGMa to mouse DA neurons showed that overexpression of this repulsive axon guidance and cell patterning cue models the behavioral and neuropathological characteristics of PD in a remarkable way. These findings have implications for therapy development as interfering with the function of this specific axon guidance cue may be beneficial to the survival of DA neurons.


Assuntos
Proteínas do Tecido Nervoso/genética , Doença de Parkinson/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Linhagem Celular Tumoral , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Feminino , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Microglia/patologia , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/patologia , Doença de Parkinson/fisiopatologia , Substância Negra/metabolismo , Substância Negra/patologia
6.
PLoS Biol ; 12(3): e1001808, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24618750

RESUMO

Neuropilin-1 (Nrp1) guides the development of the nervous and vascular systems, but its role in the mature brain remains to be explored. Here we report that the expression of the 65 kDa isoform of Sema3A, the ligand of Nrp1, by adult vascular endothelial cells, is regulated during the ovarian cycle and promotes axonal sprouting in hypothalamic neurons secreting gonadotropin-releasing hormone (GnRH), the neuropeptide controlling reproduction. Both the inhibition of Sema3A/Nrp1 signaling and the conditional deletion of Nrp1 in GnRH neurons counteract Sema3A-induced axonal sprouting. Furthermore, the localized intracerebral infusion of Nrp1- or Sema3A-neutralizing antibodies in vivo disrupts the ovarian cycle. Finally, the selective neutralization of endothelial-cell Sema3A signaling in adult Sema3aloxP/loxP mice by the intravenous injection of the recombinant TAT-Cre protein alters the amplitude of the preovulatory luteinizing hormone surge, likely by perturbing GnRH release into the hypothalamo-hypophyseal portal system. Our results identify a previously unknown function for 65 kDa Sema3A-Nrp1 signaling in the induction of axonal growth, and raise the possibility that endothelial cells actively participate in synaptic plasticity in specific functional domains of the adult central nervous system, thus controlling key physiological functions such as reproduction.


Assuntos
Encéfalo/metabolismo , Células Endoteliais/metabolismo , Fertilidade/fisiologia , Neuropilina-1/fisiologia , Semaforina-3A/metabolismo , Animais , Axônios/metabolismo , Axônios/ultraestrutura , Ciclo Estral/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Hormônio Liberador de Gonadotropina/fisiologia , Ligantes , Hormônio Luteinizante/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neuropilina-1/metabolismo , Ratos , Ratos Sprague-Dawley , Semaforina-3A/genética , Semaforina-3A/fisiologia , Transdução de Sinais
7.
J Neurosci Res ; 88(11): 2325-37, 2010 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-20336771

RESUMO

The ubiquitin-proteasome system fulfills a pivotal role in regulating intracellular protein turnover. Impairment of this system is implicated in the pathogenesis of neurodegenerative diseases characterized by ubiquitin- containing proteinaceous deposits. UBB(+1), a mutant ubiquitin, is one of the proteins accumulating in the neuropathological hallmarks of tauopathies, including Alzheimer's disease, and polyglutamine diseases. In vitro, UBB(+1) properties shift from a proteasomal ubiquitin-fusion degradation substrate at low expression levels to a proteasome inhibitor at high expression levels. Here we report on a novel transgenic mouse line (line 6663) expressing low levels of neuronal UBB(+1). In these mice, UBB(+1) protein is scarcely detectable in the neuronal cell population. Accumulation of UBB(+1) commences only after intracranial infusion of the proteasome inhibitors lactacystin or MG262, showing that, at these low expression levels, the UBB(+1) protein is a substrate for proteasomal degradation in vivo. In addition, accumulation of the protein serves as a reporter for proteasome inhibition. These findings strengthen our proposition that, in healthy brain, UBB(+1) is continuously degraded and disease-related UBB(+1) accumulation serves as an endogenous marker for proteasomal dysfunction. This novel transgenic line can give more insight into the intrinsic properties of UBB(+1) and its role in neurodegenerative disease.


Assuntos
Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/genética , Ubiquitina/metabolismo , Acetilcisteína/análogos & derivados , Acetilcisteína/farmacologia , Envelhecimento/fisiologia , Animais , Proteínas Quinases Dependentes de Cálcio-Calmodulina/genética , Proteínas Quinases Dependentes de Cálcio-Calmodulina/fisiologia , Linhagem Celular , Imuno-Histoquímica , Camundongos , Camundongos Transgênicos , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Radioimunoensaio , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Inibidores de Serina Proteinase/farmacologia
8.
Mol Cell Neurosci ; 43(3): 281-6, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20005957

RESUMO

UBB(+1), a mutant form of ubiquitin, is both a substrate and an inhibitor of the proteasome which accumulates in the neuropathological hallmarks of Huntington disease (HD). In vitro, expression of UBB(+1) and mutant huntingtin synergistically increase aggregate formation and polyglutamine induced cell death. We generated a UBB(+1) transgenic mouse line expressing UBB(+1) within the neurons of the striatum. In these mice lentiviral driven expression of expanded huntingtin constructs in the striatum results in a significant increase in neuronal inclusion formation. Although UBB(+1) transgenic mice show neither a decreased lifespan nor apparent neuronal loss, they appear to be more vulnerable to toxic insults like expanded polyglutamine proteins due to a modest proteasome inhibition. These findings underscore the relevance of an efficient ubiquitin-proteasome system in HD.


Assuntos
Modelos Animais de Doenças , Doença de Huntington/patologia , Inibidores de Proteassoma , Ubiquitina/metabolismo , Animais , Morte Celular , Proteína Huntingtina , Doença de Huntington/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Peptídeos/toxicidade , Ubiquitina/genética
9.
Hum Mol Genet ; 13(16): 1803-13, 2004 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-15198995

RESUMO

Polyglutamine diseases are characterized by neuronal intranuclear inclusions (NIIs) of expanded polyglutamine proteins, indicating the failure of protein degradation. UBB(+1), an aberrant form of ubiquitin, is a substrate and inhibitor of the proteasome, and was previously reported to accumulate in Alzheimer disease and other tauopathies. Here, we show accumulation of UBB(+1) in the NIIs and the cytoplasm of neurons in Huntington disease and spinocerebellar ataxia type-3, indicating inhibition of the proteasome by polyglutamine proteins in human brain. We found that UBB(+1) not only increased aggregate formation of expanded polyglutamines in neuronally differentiated cell lines, but also had a synergistic effect on apoptotic cell death due to expanded polyglutamine proteins. These findings implicate UBB(+1) as an aggravating factor in polyglutamine-induced neurodegeneration, and clearly identify an important role for the ubiquitin-proteasome system in polyglutamine diseases.


Assuntos
Apoptose/fisiologia , Encéfalo/metabolismo , Transtornos Heredodegenerativos do Sistema Nervoso/metabolismo , Corpos de Inclusão/metabolismo , Peptídeos/metabolismo , Ubiquitina/metabolismo , Western Blotting , Sobrevivência Celular , Clonagem Molecular , DNA Complementar/genética , Imunofluorescência , Transtornos Heredodegenerativos do Sistema Nervoso/fisiopatologia , Humanos , Imuno-Histoquímica , Plasmídeos/genética , Transfecção , Células Tumorais Cultivadas
10.
FASEB J ; 17(14): 2014-24, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14597671

RESUMO

Molecular misreading of the ubiquitin-B (UBB) gene results in a dinucleotide deletion in UBB mRNA. The resulting mutant protein, UBB+1, accumulates in the neuropathological hallmarks of Alzheimer disease. In vitro, UBB+1 inhibits proteasomal proteolysis, although it is also an ubiquitin fusion degradation substrate for the proteasome. Using the ligase chain reaction to detect dinucleotide deletions, we report here that UBB+1 transcripts are present in each neurodegenerative disease studied (tauo- and synucleinopathies) and even in control brain samples. In contrast to UBB+1 transcripts, UBB+1 protein accumulation in the ubiquitin-containing neuropathological hallmarks is restricted to the tauopathies such as Pick disease, frontotemporal dementia, progressive supranuclear palsy, and argyrophilic grain disease. Remarkably, UBB+1 protein is not detected in the major forms of synucleinopathies (Lewy body disease and multiple system atrophy). The neurologically intact brain can cope with UBB+1 as lentivirally delivered UBB+1 protein is rapidly degraded in rat hippocampus, whereas the K29,48R mutant of UBB+1, which is not ubiquitinated, is abundantly expressed. The finding that UBB+1 protein only accumulates in tauopathies thus implies that the ubiquitin-proteasome system is impaired specifically in this group of neurodegenerative diseases and not in synucleinopathies and that the presence of UBB+1 protein reports proteasomal dysfunction in the brain.


Assuntos
Encéfalo/enzimologia , Cisteína Endopeptidases/metabolismo , Complexos Multienzimáticos/metabolismo , Doenças Neurodegenerativas/enzimologia , Ubiquitina/metabolismo , Ubiquitinas/metabolismo , Especificidade de Anticorpos , Biomarcadores/análise , Encéfalo/metabolismo , Hipocampo/enzimologia , Humanos , Doença por Corpos de Lewy/metabolismo , Doença por Corpos de Lewy/patologia , Atrofia de Múltiplos Sistemas/metabolismo , Atrofia de Múltiplos Sistemas/patologia , Mutação , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Neurônios/patologia , Complexo de Endopeptidases do Proteassoma , RNA Mensageiro/genética , Deleção de Sequência , Tauopatias/genética , Tauopatias/metabolismo , Tauopatias/patologia , Ubiquitina/genética , Ubiquitina/imunologia , Ubiquitinas/genética , Ubiquitinas/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA