Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Cancer Immunol Immunother ; 72(10): 3323-3335, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37477653

RESUMO

Allogeneic natural killer (NK) cell-based immunotherapy is a promising, well-tolerated adjuvant therapeutic approach for acute myeloid leukemia (AML). For reproducible NK cell immunotherapy, a homogenous, pure and scalable NK cell product is preferred. Therefore, we developed a good manufacturing practice (GMP)-compliant, cytokine-based ex vivo manufacturing process for generating NK cells from CD34+ hematopoietic stem and progenitor cells (HSPC). This manufacturing process combines amongst others IL15 and IL12 and the aryl hydrocarbon receptor antagonist StemRegenin-1 (SR1) to generate a consistent and active NK cell product that fits the requirements for NK cell immunotherapy well. The cell culture protocol was first optimized to generate NK cells with required expansion and differentiation capacity in GMP-compliant closed system cell culture bags. In addition, phenotype, antitumor potency, proliferative and metabolic capacity were evaluated to characterize the HSPC-NK product. Subsequently, seven batches were manufactured for qualification of the process. All seven runs demonstrated consistent results for proliferation, differentiation and antitumor potency, and preliminary specifications for the investigational medicinal product for early clinical phase trials were set. This GMP-compliant manufacturing process for HSPC-NK cells (named RNK001 cells) is used to produce NK cell batches applied in the clinical trial 'Infusion of ex vivo-generated allogeneic natural killer cells in combination with subcutaneous IL2 in patients with acute myeloid leukemia' approved by the Dutch Ethics Committee (EudraCT 2019-001929-27).


Assuntos
Imunoterapia Adotiva , Leucemia Mieloide Aguda , Humanos , Imunoterapia Adotiva/métodos , Células Matadoras Naturais/metabolismo , Leucemia Mieloide Aguda/genética , Antígenos CD34/metabolismo , Células-Tronco Hematopoéticas
2.
Virchows Arch ; 483(1): 105-110, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36241730

RESUMO

Clonality assessment by the detection of immunoglobulin (IG) gene rearrangements is an important method to determine whether two concurrent or subsequent lymphoid malignancies in one patient are clonally related. Here, we report the detailed clonality analysis in a patient with a diagnosis of B-cell acute lymphoblastic leukemia (B-ALL) followed by a histiocytic sarcoma (HS), in which we were able to study clonal evolution by applying next generation sequencing (NGS) to identify IG rearrangements and gene mutations. Using the sequence information of the NGS-based IG clonality analysis, multiple related subclones could be distinguished in the PAX5 P80R-mutated B-ALL. Notably, only one of these subclones evolved into HS after acquiring a RAF1 mutation. This case demonstrates that NGS-based IG clonality assessment and mutation analysis provide clear added value for clonal comparison and thereby improves clinicobiological understanding.


Assuntos
Linfoma de Burkitt , Sarcoma Histiocítico , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Sarcoma Histiocítico/genética , Sarcoma Histiocítico/patologia , Imunoglobulinas/genética , Rearranjo Gênico , Linfoma de Burkitt/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Fator de Transcrição PAX5/genética
4.
Cancer Immunol Immunother ; 70(5): 1305-1321, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33140189

RESUMO

Allogeneic natural killer (NK) cell transfer is a potential immunotherapy to eliminate and control cancer. A promising source are CD34 + hematopoietic progenitor cells (HPCs), since large numbers of cytotoxic NK cells can be generated. Effective boosting of NK cell function can be achieved by interleukin (IL)-15. However, its in vivo half-life is short and potent trans-presentation by IL-15 receptor α (IL-15Rα) is absent. Therefore, ImmunityBio developed IL-15 superagonist N-803, which combines IL-15 with an activating mutation, an IL-15Rα sushi domain for trans-presentation, and IgG1-Fc for increased half-life. Here, we investigated whether and how N-803 improves HPC-NK cell functionality in leukemia and ovarian cancer (OC) models in vitro and in vivo in OC-bearing immunodeficient mice. We used flow cytometry-based assays, enzyme-linked immunosorbent assay, microscopy-based serial killing assays, and bioluminescence imaging, for in vitro and in vivo experiments. N-803 increased HPC-NK cell proliferation and interferon (IFN)γ production. On leukemia cells, co-culture with HPC-NK cells and N-803 increased ICAM-1 expression. Furthermore, N-803 improved HPC-NK cell-mediated (serial) leukemia killing. Treating OC spheroids with HPC-NK cells and N-803 increased IFNγ-induced CXCL10 secretion, and target killing after prolonged exposure. In immunodeficient mice bearing human OC, N-803 supported HPC-NK cell persistence in combination with total human immunoglobulins to prevent Fc-mediated HPC-NK cell depletion. Moreover, this combination treatment decreased tumor growth. In conclusion,  N-803 is a promising IL-15-based compound that boosts HPC-NK cell expansion and functionality in vitro and in vivo. Adding N-803 to HPC-NK cell therapy could improve cancer immunotherapy.


Assuntos
Antineoplásicos/uso terapêutico , Interleucina-15/agonistas , Células Matadoras Naturais/imunologia , Leucemia/terapia , Células Progenitoras Linfoides/imunologia , Neoplasias Ovarianas/terapia , Proteínas Recombinantes de Fusão/uso terapêutico , Animais , Antígenos CD34/metabolismo , Antineoplásicos/farmacologia , Diferenciação Celular , Linhagem Celular Tumoral , Testes Imunológicos de Citotoxicidade , Modelos Animais de Doenças , Feminino , Humanos , Interferon gama/metabolismo , Células Matadoras Naturais/transplante , Leucemia/imunologia , Células Progenitoras Linfoides/transplante , Camundongos , Camundongos SCID , Neoplasias Ovarianas/imunologia , Proteínas Recombinantes de Fusão/farmacologia
5.
Bone Marrow Transplant ; 52(10): 1378-1383, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28581468

RESUMO

Allogeneic stem cell transplantation (allo-SCT) with or without donor lymphocyte infusions (DLI) is the only curative option for several hematological malignancies. Unfortunately, allo-SCT is often associated with GvHD, and patients often relapse. We therefore aim to improve the graft-versus-tumor effect, without increasing the risk of GvHD, by targeting hematopoietic lineage-restricted and tumor-associated minor histocompatibility antigens using peptide-loaded dendritic cell (DC) vaccinations. In the present multicenter study, we report the feasibility, safety and efficacy of this concept. We treated nine multiple myeloma patients with persistent or relapsed disease after allo-SCT and a previous DLI, with donor monocyte-derived mHag-peptide-loaded DC vaccinations combined with a second DLI. Vaccinations were well tolerated and no occurrence of GvHD was observed. In five out of nine patients, we were able to show the induction of mHag-specific CD8+ T cells in peripheral blood. Five out of nine patients, of which four developed mHag-specific T cells, showed stable disease (SD) for 3.5-10 months. This study shows that mHag-based donor monocyte-derived DC vaccination combined with DLI is safe, feasible and capable of inducing objective mHag-specific T-cell responses. Future research should focus on further improvement of the vaccination strategy, toward translating the observed T-cell responses into robust clinical responses.


Assuntos
Antígenos de Neoplasias/imunologia , Doadores de Sangue , Células Dendríticas , Antígenos HLA/imunologia , Imunidade Celular , Transfusão de Linfócitos , Mieloma Múltiplo , Transplante de Células-Tronco , Vacinação , Adulto , Idoso , Aloenxertos , Células Dendríticas/imunologia , Células Dendríticas/transplante , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mieloma Múltiplo/imunologia , Mieloma Múltiplo/mortalidade , Mieloma Múltiplo/patologia , Mieloma Múltiplo/terapia , Peptídeos/imunologia
6.
Bone Marrow Transplant ; 50(6): 822-8, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25798669

RESUMO

Allo-SCT followed by DLIs can establish long-term remissions in multiple myeloma (MM) patients. In many patients, however, the immunotherapeutic graft-versus-tumor (GVT) effect is moderate and not sustained, implying that immune suppression is mediated, among other factors, by regulatory T cells (Tregs) or myeloid-derived suppressor cells (MDSCs). Towards a better understanding and, eventually, manipulation of the immune-regulatory mechanisms in transplanted MM patients, we retrospectively sought a correlation between DLI outcome and circulating CD14(+) MDSCs, CD14(-) MDSCs and Tregs in 53 MM patients before their first DLI. We found significantly elevated frequencies of highly suppressive CD14(+) MDSCs, CD14(-) MDSCs and Tregs in pre-DLI samples from patients. Higher frequencies of Tregs, but not of MDSCs, were significantly associated with non-responsiveness to DLI. Furthermore, a lower frequency of Tregs predicted the development of chronic GVHD, which, in turn, displayed a high association with GVT. Elevated Treg frequencies before DLI were also associated with significantly shorter PFS and OS. Hence, our data reinforce the idea of active suppression of antitumor responses by Tregs in MM patients and therefore suggest that targeting patient Tregs before DLI may improve outcome of DLI.


Assuntos
Efeito Enxerto vs Tumor/imunologia , Mieloma Múltiplo , Células Mieloides/imunologia , Transplante de Células-Tronco , Linfócitos T Reguladores/imunologia , Adulto , Idoso , Aloenxertos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mieloma Múltiplo/imunologia , Mieloma Múltiplo/terapia , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA