Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Am Acad Orthop Surg ; 32(1): e17-e25, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37494716

RESUMO

INTRODUCTION: Surgical simulation is increasingly being accepted as a training platform to promote skill development and a safe surgical technique. Preliminary investigations in spine surgery show that simulation paired with educational intervention can markedly improve trainee performance. This study used a newly developed thoracolumbar fusion rod bending model to assess the effect of a novel educational curriculum and simulator training on surgical trainee rod bending speed and proficiency. METHODS: Junior (PGY1 to 2) and senior (PGY3-fellow) surgical trainees at a single academic institution were prospectively enrolled in a rod bending simulation using a T7-pelvis spinal fusion model. Participants completed two simulations, with 1 month between first and second attempts. Fifty percent of surgeons in each training level were randomized to receive an educational curriculum (rod bending technique videos and unlimited simulator practice) between simulation attempts. Rod bending simulation proficiency was determined by the percentage of participants who completed the task (conclusion at 20 minutes), time to task completion or conclusion, and number of incomplete set screws at task conclusion. Participants completed a preparticipation and postparticipation survey. Univariate analysis compared rod bending proficiency and survey results between education and control cohorts. RESULTS: Forty trainees (20 junior and 20 senior) were enrolled, with 20 participants randomized to the education and control cohorts. No notable differences were observed in the first simulation rod bending proficiency or preparticipation survey results between the education and control cohorts. In the second simulation, the education versus the control cohort demonstrated a significantly higher completion rate ( P = 0.01), shorter task time ( P = 0.009), fewer incomplete screws ( P = 0.003), and greater experience level ( P = 0.008) and comfort level ( P = 0.002) on postparticipation survey. DISCUSSION: Trainees who participated in a novel educational curriculum and simulator training relative to the control cohort improved markedly in rod bending proficiency and comfort level. Rod bending simulation could be incorporated in existing residency and fellowship surgical skills curricula. LEVEL OF EVIDENCE: I.


Assuntos
Internato e Residência , Treinamento por Simulação , Humanos , Estudos Prospectivos , Treinamento por Simulação/métodos , Competência Clínica , Currículo , Simulação por Computador
2.
Int J Spine Surg ; 16(2): 208-214, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35444031

RESUMO

BACKGROUND: The utility of intraoperative neurophysiological monitoring (IONM) is well established for some spine surgeries (eg, intramedullary tumor resection, scoliosis deformity correction), but its benefit for most degenerative spine surgery, including anterior cervical discectomy and fusion (ACDF), remains debated. National datasets provide "big data" approaches to study the impact of IONM on spine surgery outcomes; however, if administrative coding in these datasets misrepresents actual IONM usage, conclusions will be unreliable. The objective of this study was to compare estimated rates (administrative coding) to actual rates (chart review) of IONM for ACDF at our institution and extrapolate findings to estimated rates from 2 national datasets. METHODS: Patients were included from 3 administrative coding databases: the authors' single institution database, the Nationwide Inpatient Sample (NIS), and the National Surgical Quality Improvement Program (NSQIP). Estimated and actual institutional rates of IONM during ACDF were determined by administrative codes (International Classification of Diseases [ICD] or Current Procedural Terminology [CPT]) and chart review, respectively. National rates of IONM during ACDF were estimated using the NIS and NSQIP datasets. RESULTS: Estimated institutional rates of IONM for ACDF were much higher with CPT than ICD coding (73.2% vs 16.5% in 2019). CPT coding for IONM better approximated actual IONM usage at our institution (74.6% in 2019). Estimated IONM utilization rates for ACDF in national datasets varied widely: 0.76% in CPT-based NSQIP and 18.4% in ICD-based NIS. CONCLUSIONS: ICD coding underestimated IONM usage during ACDF at our institution, whereas CPT coding was more accurate. Unfortunately, the CPT-based NSQIP is nearly devoid of IONM codes, as it has not been a collection focus of that surgical registry. ICD-based datasets, such as the NIS, likely fail to accurately capture IONM usage. Multicenter and/or national datasets with accurate IONM utilization data are needed to inform surgeons, insurers, and guideline authors on whether IONM has benefit for various spine surgery types. CLINICAL RELEVANCE: Currently available national databases based on administrative codes do not accurately reflect IONM usage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA