Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Protoc ; 18(10): 2927-2953, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37697108

RESUMO

Neuropixels are silicon-based electrophysiology-recording probes with high channel count and recording-site density. These probes offer a turnkey platform for measuring neural activity with single-cell resolution and at a scale that is beyond the capabilities of current clinically approved devices. Our team demonstrated the first-in-human use of these probes during resection surgery for epilepsy or tumors and deep brain stimulation electrode placement in patients with Parkinson's disease. Here, we provide a better understanding of the capabilities and challenges of using Neuropixels as a research tool to study human neurophysiology, with the hope that this information may inform future efforts toward regulatory approval of Neuropixels probes as research devices. In perioperative procedures, the major concerns are the initial sterility of the device, maintaining a sterile field during surgery, having multiple referencing and grounding schemes available to de-noise recordings (if necessary), protecting the silicon probe from accidental contact before insertion and obtaining high-quality action potential and local field potential recordings. The research team ensures that the device is fully operational while coordinating with the surgical team to remove sources of electrical noise that could otherwise substantially affect the signals recorded by the sensitive hardware. Prior preparation using the equipment and training in human clinical research and working in operating rooms maximize effective communication within and between the teams, ensuring high recording quality and minimizing the time added to the surgery. The perioperative procedure requires ~4 h, and the entire protocol requires multiple weeks.


Assuntos
Salas Cirúrgicas , Silício , Humanos , Eletrodos , Neurofisiologia , Potenciais de Ação/fisiologia , Eletrodos Implantados
2.
Lancet ; 397(10284): 1545-1553, 2021 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-33894832

RESUMO

BACKGROUND: Long-term loss of arm function after ischaemic stroke is common and might be improved by vagus nerve stimulation paired with rehabilitation. We aimed to determine whether this strategy is a safe and effective treatment for improving arm function after stroke. METHODS: In this pivotal, randomised, triple-blind, sham-controlled trial, done in 19 stroke rehabilitation services in the UK and the USA, participants with moderate-to-severe arm weakness, at least 9 months after ischaemic stroke, were randomly assigned (1:1) to either rehabilitation paired with active vagus nerve stimulation (VNS group) or rehabilitation paired with sham stimulation (control group). Randomisation was done by ResearchPoint Global (Austin, TX, USA) using SAS PROC PLAN (SAS Institute Software, Cary, NC, USA), with stratification by region (USA vs UK), age (≤30 years vs >30 years), and baseline Fugl-Meyer Assessment-Upper Extremity (FMA-UE) score (20-35 vs 36-50). Participants, outcomes assessors, and treating therapists were masked to group assignment. All participants were implanted with a vagus nerve stimulation device. The VNS group received 0·8 mA, 100 µs, 30 Hz stimulation pulses, lasting 0·5 s. The control group received 0 mA pulses. Participants received 6 weeks of in-clinic therapy (three times per week; total of 18 sessions) followed by a home exercise programme. The primary outcome was the change in impairment measured by the FMA-UE score on the first day after completion of in-clinic therapy. FMA-UE response rates were also assessed at 90 days after in-clinic therapy (secondary endpoint). All analyses were by intention to treat. This trial is registered at ClinicalTrials.gov, NCT03131960. FINDINGS: Between Oct 2, 2017, and Sept 12, 2019, 108 participants were randomly assigned to treatment (53 to the VNS group and 55 to the control group). 106 completed the study (one patient for each group did not complete the study). On the first day after completion of in-clinic therapy, the mean FMA-UE score increased by 5·0 points (SD 4·4) in the VNS group and by 2·4 points (3·8) in the control group (between group difference 2·6, 95% CI 1·0-4·2, p=0·0014). 90 days after in-clinic therapy, a clinically meaningful response on the FMA-UE score was achieved in 23 (47%) of 53 patients in the VNS group versus 13 (24%) of 55 patients in the control group (between group difference 24%, 6-41; p=0·0098). There was one serious adverse event related to surgery (vocal cord paresis) in the control group. INTERPRETATION: Vagus nerve stimulation paired with rehabilitation is a novel potential treatment option for people with long-term moderate-to-severe arm impairment after ischaemic stroke. FUNDING: MicroTransponder.


Assuntos
Neuroestimuladores Implantáveis/efeitos adversos , AVC Isquêmico/complicações , Reabilitação do Acidente Vascular Cerebral/métodos , Extremidade Superior/fisiopatologia , Estimulação do Nervo Vago/instrumentação , Idoso , Estudos de Casos e Controles , Terapia Combinada/métodos , Terapia por Exercício/métodos , Feminino , Humanos , AVC Isquêmico/reabilitação , Masculino , Pessoa de Meia-Idade , Avaliação de Resultados em Cuidados de Saúde , Paresia/etiologia , Recuperação de Função Fisiológica/fisiologia , Resultado do Tratamento , Paralisia das Pregas Vocais/epidemiologia
3.
J Neurointerv Surg ; 13(2): 102-108, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33115813

RESUMO

BACKGROUND: Implantable brain-computer interfaces (BCIs), functioning as motor neuroprostheses, have the potential to restore voluntary motor impulses to control digital devices and improve functional independence in patients with severe paralysis due to brain, spinal cord, peripheral nerve or muscle dysfunction. However, reports to date have had limited clinical translation. METHODS: Two participants with amyotrophic lateral sclerosis (ALS) underwent implant in a single-arm, open-label, prospective, early feasibility study. Using a minimally invasive neurointervention procedure, a novel endovascular Stentrode BCI was implanted in the superior sagittal sinus adjacent to primary motor cortex. The participants undertook machine-learning-assisted training to use wirelessly transmitted electrocorticography signal associated with attempted movements to control multiple mouse-click actions, including zoom and left-click. Used in combination with an eye-tracker for cursor navigation, participants achieved Windows 10 operating system control to conduct instrumental activities of daily living (IADL) tasks. RESULTS: Unsupervised home use commenced from day 86 onwards for participant 1, and day 71 for participant 2. Participant 1 achieved a typing task average click selection accuracy of 92.63% (100.00%, 87.50%-100.00%) (trial mean (median, Q1-Q3)) at a rate of 13.81 (13.44, 10.96-16.09) correct characters per minute (CCPM) with predictive text disabled. Participant 2 achieved an average click selection accuracy of 93.18% (100.00%, 88.19%-100.00%) at 20.10 (17.73, 12.27-26.50) CCPM. Completion of IADL tasks including text messaging, online shopping and managing finances independently was demonstrated in both participants. CONCLUSION: We describe the first-in-human experience of a minimally invasive, fully implanted, wireless, ambulatory motor neuroprosthesis using an endovascular stent-electrode array to transmit electrocorticography signals from the motor cortex for multiple command control of digital devices in two participants with flaccid upper limb paralysis.


Assuntos
Atividades Cotidianas , Interfaces Cérebro-Computador , Neuroestimuladores Implantáveis , Córtex Motor/fisiologia , Paralisia/terapia , Índice de Gravidade de Doença , Atividades Cotidianas/psicologia , Idoso , Interfaces Cérebro-Computador/psicologia , Estudos de Viabilidade , Feminino , Humanos , Imageamento Tridimensional/métodos , Masculino , Pessoa de Meia-Idade , Córtex Motor/diagnóstico por imagem , Paralisia/diagnóstico por imagem , Paralisia/fisiopatologia , Estudos Prospectivos
4.
Handb Clin Neurol ; 168: 87-99, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32164870

RESUMO

Brain-computer interfaces (BCIs) have the potential to improve the quality of life of individuals with severe motor disabilities. BCIs capture the user's brain activity and translate it into commands for the control of an effector, such as a computer cursor, robotic limb, or functional electrical stimulation device. Full dexterous manipulation of robotic and prosthetic arms via a BCI system has been a challenge because of the inherent need to decode high dimensional and preferably real-time control commands from the user's neural activity. Nevertheless, such functionality is fundamental if BCI-controlled robotic or prosthetic limbs are to be used for daily activities. In this chapter, we review how this challenge has been addressed by BCI researchers and how new solutions may improve the BCI user experience with robotic effectors.


Assuntos
Interfaces Cérebro-Computador , Encéfalo/fisiopatologia , Encéfalo/cirurgia , Procedimentos Cirúrgicos Robóticos , Eletroencefalografia/métodos , Humanos , Qualidade de Vida , Procedimentos Cirúrgicos Robóticos/métodos , Robótica
5.
IEEE Trans Biomed Eng ; 67(3): 817-831, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31180831

RESUMO

OBJECTIVE: We examine, for the first time, the use of intracortical microelectrode array (MEA) signals for early detection of human epileptic seizures. METHODS: 4×4 mm2 96-channel-MEA recordings were obtained during neuro-monitoring preceding resective surgery in five participants. The participant-specific seizure-detection framework consisted of: first, feature extraction from local field potentials (LFPs) and multiunit activity (MUA); second, nonlinear cost-sensitive support vector machine (SVM) classification of ictal and interictal states based on LFP, MUA, and combined LFP-MUA (a SVM was trained for each participant separately); and third, Kalman filter postprocessing of SVM scoring functions. Performance was assessed on data including 17 seizures and 39.0 h interictal and preictal recordings. RESULTS: The use of combined LFP-MUA features resulted in 100% sensitivity with short detection latency (average: 2.7 s; median: 2.5 s) and five false alarms (0.13/h). The average detection performance based on the area under the receiver operating characteristic corresponded to 0.97. Importantly, technically false alarms were related to epileptiform activity, subclinical seizures, and recording artifacts. Extreme gradient boosting classifiers ranked features based on LFP spectral coherence or MUA count among the top features for seizures characterized by spike-wave complexes, whereas features related to LFP power spectra were ranked higher for seizures characterized by sustained gamma LFP oscillations. CONCLUSION: The combination of intracortical LFP and MUA signals may allow reliable detection of human epileptic seizures by improving latency and false alarm rate. SIGNIFICANCE: Intracortical MEAs provide promising signals for closed-loop seizure-control systems based on seizure early-detection in people with pharmacologically resistant epilepsies.


Assuntos
Eletroencefalografia/instrumentação , Eletroencefalografia/métodos , Convulsões/diagnóstico , Processamento de Sinais Assistido por Computador , Diagnóstico Precoce , Humanos , Masculino , Microeletrodos , Pessoa de Meia-Idade , Convulsões/fisiopatologia , Máquina de Vetores de Suporte
6.
PLoS One ; 14(7): e0211847, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31329587

RESUMO

The apparent unpredictability of epileptic seizures has a major impact in the quality of life of people with pharmacologically resistant seizures. Here, we present initial results and a proof-of-concept of how focal seizures can be predicted early in advance based on intracortical signals recorded from small neocortical patches away from identified seizure onset areas. We show that machine learning algorithms can discriminate between interictal and preictal periods based on multiunit activity (i.e. thresholded action potential counts) and multi-frequency band local field potentials recorded via 4 X 4 mm2 microelectrode arrays. Microelectrode arrays were implanted in 5 patients undergoing neuromonitoring for resective surgery. Post-implant analysis revealed arrays were outside the seizure onset areas. Preictal periods were defined as the 1-hour period leading to a seizure. A 5-minute gap between the preictal period and the putative seizure onset was enforced to account for potential errors in the determination of actual seizure onset times. We used extreme gradient boosting and long short-term memory networks for prediction. Prediction accuracy based on the area under the receiver operating characteristic curves reached 90% for at least one feature type in each patient. Importantly, successful prediction could be achieved based exclusively on multiunit activity. This result indicates that preictal activity in the recorded neocortical patches involved not only subthreshold postsynaptic potentials, perhaps driven by the distal seizure onset areas, but also neuronal spiking in distal recurrent neocortical networks. Beyond the commonly identified seizure onset areas, our findings point to the engagement of large-scale neuronal networks in the neural dynamics building up toward a seizure. Our initial results obtained on currently available human intracortical microelectrode array recordings warrant new studies on larger datasets, and open new perspectives for seizure prediction and control by emphasizing the contribution of multiscale neural signals in large-scale neuronal networks.


Assuntos
Potenciais de Ação/fisiologia , Algoritmos , Córtex Cerebral/fisiopatologia , Aprendizado de Máquina , Convulsões/diagnóstico , Adulto , Mapeamento Encefálico/métodos , Eletroencefalografia/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Convulsões/fisiopatologia , Processamento de Sinais Assistido por Computador , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA