RESUMO
Cancer is mainly caused by somatic genome alterations (SGAs). Precision oncology involves identifying and targeting tumor-specific aberrations resulting from causative SGAs. We developed a novel tumor-specific computational framework that finds the likely causative SGAs in an individual tumor and estimates their impact on oncogenic processes, which suggests the disease mechanisms that are acting in that tumor. This information can be used to guide precision oncology. We report a tumor-specific causal inference (TCI) framework, which estimates causative SGAs by modeling causal relationships between SGAs and molecular phenotypes (e.g., transcriptomic, proteomic, or metabolomic changes) within an individual tumor. We applied the TCI algorithm to tumors from The Cancer Genome Atlas (TCGA) and estimated for each tumor the SGAs that causally regulate the differentially expressed genes (DEGs) in that tumor. Overall, TCI identified 634 SGAs that are predicted to cause cancer-related DEGs in a significant number of tumors, including most of the previously known drivers and many novel candidate cancer drivers. The inferred causal relationships are statistically robust and biologically sensible, and multiple lines of experimental evidence support the predicted functional impact of both the well-known and the novel candidate drivers that are predicted by TCI. TCI provides a unified framework that integrates multiple types of SGAs and molecular phenotypes to estimate which genome perturbations are causally influencing one or more molecular/cellular phenotypes in an individual tumor. By identifying major candidate drivers and revealing their functional impact in an individual tumor, TCI sheds light on the disease mechanisms of that tumor, which can serve to advance our basic knowledge of cancer biology and to support precision oncology that provides tailored treatment of individual tumors.
Assuntos
Neoplasias/genética , Algoritmos , Teorema de Bayes , Biologia Computacional , Genoma Humano , Humanos , Modelos Genéticos , Mutação , Neoplasias/etiologia , Oncogenes , Fenótipo , Medicina de PrecisãoRESUMO
BACKGROUND: Mean arterial pressure (MAP), bispectral index (BIS), and minimum alveolar concentration (MAC) represent valuable, yet dynamic intraoperative monitoring variables. They provide information related to poor outcomes when considered together, however their collective behavior across time has not been characterized. METHODS: We have developed the Triple Variable Index (TVI), a composite variable representing the sum of z-scores from MAP, BIS, and MAC values that occur together during surgery. We generated a TVI expression profile, defined as the sequential TVI values expressed across time, for each surgery where concurrent MAP, BIS, and MAC monitoring occurred in an adult patient (≥18 years) at the University of Pittsburgh Medical Center between January and July 2014 (n = 5296). Patterns of TVI expression were identified using k-means clustering and compared across numerous patient, procedure, and outcome characteristics. TVI and the triple low state were compared as prediction models for 30-day postoperative mortality. RESULTS: The median frequency MAP, BIS, and MAC were recorded was one measurement every 3, 5, and 5 min. Three expression patterns were identified: elevated, mixed, and depressed. The elevated pattern displayed the highest average MAP, BIS, and MAC values (86.5 mmHg, 45.3, and 0.98, respectively), while the depressed pattern displayed the lowest values (76.6 mmHg, 38.0, 0.66). Patterns (elevated, mixed, depressed) were distinct across the following characteristics: average patient age (52, 53, 54 years), American Society of Anesthesiologists Physical Status 4 (6.7, 16.1, 27.3%) and 5 (0.1, 0.6, 1.6%) categories, cardiac (2.2, 6.5, 16.1%) and emergent (5.8, 10.5, 12.8%) surgery, cardiopulmonary bypass use (0.3, 2.6, 9.8%), intraoperative medication administration including etomidate (3.0, 7.3, 12.6%), hydromorphone (47.6, 26.3, 25.2%), ketamine (11.2, 4.6, 3.0%), dexmedetomidine (18.4, 16.6, 13.6%), phenylephrine (74.0, 74.8, 83.0), epinephrine (2.0, 6.0, 18.0%), norepinephrine (2.4, 7.5, 21.2%), vasopressin (3.4, 7.6, 21.0%), succinylcholine (74.0, 69.0, 61.9%), intraoperative hypotension (28.8, 33.0, 52.3%) and the triple low state (9.4, 30.3, 80.0%) exposure, and 30-day postoperative mortality (0.8, 2.7, 5.6%). TVI was a better predictor of patients that died or survived in the 30 days following surgery compared to cumulative triple low state exposure (AUC 0.68 versus 0.62, p < 0.05). CONCLUSIONS: Surgeries that share similar patterns of TVI expression display distinct patient, procedure, and outcome characteristics.
Assuntos
Pressão Arterial/fisiologia , Monitores de Consciência , Monitorização Intraoperatória/métodos , Alvéolos Pulmonares/fisiologia , Procedimentos Cirúrgicos Torácicos , Adulto , Ponte Cardiopulmonar/mortalidade , Humanos , Aprendizado de Máquina , Pessoa de Meia-Idade , Medicina PerioperatóriaRESUMO
Sarcoidosis is a systemic disease characterized by noncaseating granulomatous inflammation with tremendous clinical heterogeneity and uncertain pathobiology and lacking in clinically useful biomarkers. The Genomic Research in Alpha-1 Antitrypsin Deficiency and Sarcoidosis (GRADS) study is an observational cohort study designed to explore the role of the lung microbiome and genome in these two diseases. This article describes the design and rationale for the GRADS study sarcoidosis protocol. The study addresses the hypothesis that distinct patterns in the lung microbiome are characteristic of sarcoidosis phenotypes and are reflected in changes in systemic inflammatory responses as measured by peripheral blood changes in gene transcription. The goal is to enroll 400 participants, with a minimum of 35 in each of 9 clinical phenotype subgroups prioritized by their clinical relevance to understanding of the pathobiology and clinical heterogeneity of sarcoidosis. Participants with a confirmed diagnosis of sarcoidosis undergo a baseline visit with self-administered questionnaires, chest computed tomography, pulmonary function tests, and blood and urine testing. A research or clinical bronchoscopy with a research bronchoalveolar lavage will be performed to obtain samples for genomic and microbiome analyses. Comparisons will be made by blood genomic analysis and with clinical phenotypic variables. A 6-month follow-up visit is planned to assess each participant's clinical course. By the use of an integrative approach to the analysis of the microbiome and genome in selected clinical phenotypes, the GRADS study is powerfully positioned to inform and direct studies on the pathobiology of sarcoidosis, identify diagnostic or prognostic biomarkers, and provide novel molecular phenotypes that could lead to improved personalized approaches to therapy for sarcoidosis.
Assuntos
Pulmão/fisiopatologia , Projetos de Pesquisa , Sarcoidose/classificação , Sarcoidose/diagnóstico , Deficiência de alfa 1-Antitripsina/diagnóstico , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores , Lavagem Broncoalveolar , Broncoscopia , Estudos de Coortes , Feminino , Genômica , Humanos , Masculino , Microbiota , Pessoa de Meia-Idade , Testes de Função Respiratória , Autorrelato , Tomografia Computadorizada por Raios X , Adulto JovemRESUMO
Polypharmacy and medication non-adherence are common in older adults, potentially leading to medication-related problems and increased healthcare expenditures. Medication Delivery Units (MDUs) may improve adherence, but their interfaces may present usability challenges for older adults with age-related impairments. We used a combination of three inspection methods - heuristic evaluation, cognitive walkthrough, and simulated elderly interaction, to identify potential concerns with the usability of a commercially available telemedicine MDU. Each method revealed different problems, with repeated discoveries via different methods providing triangulated evidence. Despite the MDU's general usability, issues of varying severity were discovered. Significant usability issues associated with physical interactions with the MDU included loading and unloading the medication blister packs, and opening the delivered medication prior to administration. Less severe issues centered on small text sizes and poor user feedback. Further usability testing, involving older adults with a variety of impairments, is needed to validate findings.