Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Thorac Cardiovasc Surg ; 167(4): 1346-1358, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37743010

RESUMO

BACKGROUND: Single-dose del Nido solution was recently used in human donation after circulatory death (DCD) heart procurement. We compared the effect of del Nido cardioplegia on myocardial edema, inflammatory response, and injury in human DCD hearts and human donation after brain death (DBD) hearts with different warm ischemic times (WIT) and subsequent cold saline storage times (CST). METHODS: A total of 24 human hearts, including 6 in the DBD group and 18 in the DCD group-were procured for the research study. The DCD group was divided into 3 subgroups based on WIT: 20, 40, and ≥60 minutes. All hearts received 1 L of del Nido cardioplegia before being placed in cold saline for 6 hours. Left ventricular biopsies were performed at 0, 2, 4, and 6 hours. Temporal changes in myocardial edema, inflammatory cytokines (TNF-α, IL-6, and IL-1ß), and histopathology injury scores were compared between the DBD and DCD groups. RESULTS: DCD hearts showed more profound changes in myocardial edema, inflammation, and injury than DBD hearts at baseline and subsequent CST. The DCD heart with WIT of 20 and 40 minutes with CST of 4 and 2 hours, respectively, appeared to have limited myocardial edema, inflammation, and injury. DCD hearts with WIT ≥60 minutes showed severe myocardial edema, inflammation, and injury at baseline and subsequent CST. CONCLUSIONS: Single-dose cold del Nido cardioplegia and subsequent cold normal saline storage can preserve both DCD and DBD hearts. DCD hearts have been shown to be able to tolerate a WIT of 20 minutes and subsequent CST of 4 hours without experiencing significant myocardial edema, inflammation, and injury.


Assuntos
Transplante de Coração , Isquemia Quente , Humanos , Transplante de Coração/efeitos adversos , Coração/fisiologia , Edema/etiologia , Inflamação , Doadores de Tecidos
2.
Artif Organs ; 47(4): 749-760, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36445099

RESUMO

BACKGROUND: Processes that activate the immune system during lung transplantation can lead to primary graft dysfunction (PGD) or allograft rejection. METHODS: We analyzed cytokine expression profiles after reperfusion and allograft outcomes in a cohort of patients (n = 59) who underwent lung transplantation off-pump (n = 26), with cardiopulmonary bypass (CPB; n = 18), or with extracorporeal membrane oxygenation (ECMO; n = 15). Peripheral blood was collected from patients at baseline and at 6 and 72 h after reperfusion. To adjust for clinical differences between groups, we utilized a linear mixed model with overlap weighting. RESULTS: PGD3 was present at 48 or 72 h after reperfusion in 7.7% (2/26) of off-pump cases, 20.0% (3/15) of ECMO cases, and 38.9% (7/18) of CPB cases (p = 0.04). The ECMO and CPB groups had greater reperfusion-induced increases in MIP-1B, IL-6, IL-8, IL-9, IL1-ra, TNF-alpha, RANTES, eotaxin, IP-10, and MCP-1 levels than the off-pump group. Cytokine expression profiles after reperfusion were not significantly different between ECMO and CPB groups. CONCLUSION: Our data suggest that, compared with an off-pump approach, the intraoperative use of ECMO or CPB during lung transplantation is associated with greater reperfusion-induced cytokine release and graft injury.


Assuntos
Transplante de Pulmão , Humanos , Resultado do Tratamento , Reperfusão , Transplante Homólogo , Transplante de Pulmão/efeitos adversos , Ponte Cardiopulmonar/efeitos adversos , Estudos Retrospectivos , Biomarcadores
3.
Cells ; 11(13)2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35805175

RESUMO

Close examination of the initial results of cardiovascular cell therapy clinical trials indicates the importance of patient-specific differences on outcomes and the need to optimize or customize cell therapies. The fields of regenerative medicine and cell therapy have transitioned from using heterogeneous bone marrow mononuclear cells (BMMNCs) to mesenchymal stromal cells (MSCs), which are believed to elicit benefits through paracrine activity. Here, we examined MSCs from the BMMNCs of heart failure patients enrolled in the FOCUS-CCTRN trial. We sought to identify differences in MSCs between patients who improved and those who declined in heart function, regardless of treatment received. Although we did not observe differences in the cell profile of MSCs between groups, we did find significant differences in the MSC secretome profile between patients who improved or declined. We conclude that "mining" the MSC secretome may provide clues to better understand the impact of patient characteristics on outcomes after cell therapy and this knowledge can inform future cell therapy trials.


Assuntos
Células-Tronco Mesenquimais , Disfunção Ventricular Esquerda , Terapia Baseada em Transplante de Células e Tecidos , Humanos , Medicina Regenerativa/métodos , Secretoma
5.
Stem Cells Int ; 2019: 2608482, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31781235

RESUMO

In vitro-expanded bone marrow stromal cells (BMSCs) have long been proposed for the treatment of complex bone-related injuries because of their inherent potential to differentiate into multiple skeletal cell types, modulate inflammatory responses, and support angiogenesis. Although a wide variety of methods have been used to expand BMSCs on a large scale by using good manufacturing practice (GMP), little attention has been paid to whether the expansion procedures indeed allow the maintenance of critical cell characteristics and potency, which are crucial for therapeutic effectiveness. Here, we described standard procedures adopted in our facility for the manufacture of clinical-grade BMSC products with a preserved capacity to generate bone in vivo in compliance with the Brazilian regulatory guidelines for cells intended for use in humans. Bone marrow samples were obtained from trabecular bone. After cell isolation in standard monolayer flasks, BMSC expansion was subsequently performed in two cycles, in 2- and 10-layer cell factories, respectively. The average cell yield per cell factory at passage 1 was of 21.93 ± 12.81 × 106 cells, while at passage 2, it was of 83.05 ± 114.72 × 106 cells. All final cellular products were free from contamination with aerobic/anaerobic pathogens, mycoplasma, and bacterial endotoxins. The expanded BMSCs expressed CD73, CD90, CD105, and CD146 and were able to differentiate into osteogenic, chondrogenic, and adipogenic lineages in vitro. Most importantly, nine out of 10 of the cell products formed bone when transplanted in vivo. These validated procedures will serve as the basis for in-house BMSC manufacturing for use in clinical applications in our center.

6.
Artif Organs ; 42(10): 970-982, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30044011

RESUMO

Engineering a bioartificial heart has become a possibility in part because of the regenerative medicine approaches to repairing or replacing damaged organs that have evolved over the past two decades. With the advent of inducible pluripotent stem cell technology, it is now possible to generate personalized cells that make the concept of autologous tissue engineering imaginable. Scaffolds that provide form, function, and biological cues to cells likewise potentially enable the engineering of biocompatible vascularized solid organs. Decellularized organs or tissue matrices retain organ complexity and structure at the macro and micro scales, contain biologically active molecules that support cell phenotype and function, and are vascularized allowing full thickness tissue generation. There is also dynamic reciprocity between the extracellular matrix and cells, which does not occur with synthetic scaffolds and allows both to evolve as functional need changes, making it a unique scaffold. Yet, building a whole heart from decellularized scaffolds and cells requires delivering hundreds of billions of multiple types of cardiac cells appropriately and providing a milieu where they can survive and mature. We propose a novel type of in vivo organ engineering utilizing pre-clinical models where decellularized hearts are heterotopically transplanted with the intent to harness the capability of the body to at least in part repopulate the scaffold. By adding load and electrical input, possibly via temporary mechanical assistance, we posit that vascular and parenchymal cell maturation can occur. In this study, we implanted porcine decellularized hearts acutely and chronically in living recipients in a heterotopic position. We demonstrated that the surgical procedure is critical to prevent coagulation and to increase graft patency. We also demonstrated that short-term implantation promotes endothelial cell adhesion to the vessel lumens and that long-term implantation also promotes tissue formation with evidence of cardiomyocytes and endothelial cells present within the graft. Utilizing endogenous repair capabilities of the recipient in response to a naked ECM, we allowed the transplanted scaffold to direct host cells-both organizationally and functionally. Thus, the scaffold provided necessary cues for cell organization and remodeling within the transplanted organ. Future work would involve culturing partially recellularized engineered organs in bioreactors where mechanical and electrical stimulation can be controlled to promote organ development and then transplanting these after a minimal level of maturation has been achieved.


Assuntos
Órgãos Bioartificiais , Matriz Extracelular/química , Matriz Extracelular/transplante , Transplante de Coração/métodos , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Bovinos , Adesão Celular , Células Endoteliais/citologia , Feminino , Masculino , Miocárdio/química , Miocárdio/citologia , Miócitos Cardíacos/citologia , Suínos
7.
Stem Cells Int ; 2017: 3053759, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28611846

RESUMO

This is a pilot clinical study primarily designed to assess the feasibility and safety of X-ray-guided percutaneous intraspinal injection of allogeneic canine adipose tissue-derived mesenchymal stem cells in dogs with chronic spinal cord injury. Six dogs with chronic paraplegia (≥six months) were intraparenchymally injected with allogeneic cells in the site of lesion. Cells were obtained from subcutaneous adipose tissue of a healthy dog, cultured to passage 3, labeled with 99mTechnetium, and transplanted into the lesion by percutaneous X-ray-guided injection. Digital X-ray efficiently guided cell injection as 99mTechnetium-labeled cells remained in the injection site for at least 24 hours after transplantation. No adverse effects or complications (infection, neuropathic pain, or worsening of neurological function) were observed during the 16-week follow-up period after transplantation. Three animals improved locomotion as assessed by the Olby scale. One animal walked without support, but no changes in deep pain perception were observed. We conclude that X-ray-guided percutaneous intraspinal transplantation of allogeneic cells in dogs with chronic spinal cord injury is feasible and safe. The efficacy of the treatment will be assessed in a new study involving a larger number of animals.

8.
Nat Commun ; 7: 13344, 2016 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-27882934

RESUMO

Diabetes mellitus (DM) encompasses a multitude of secondary disorders, including heart disease. One of the most frequent and potentially life threatening disorders of DM-induced heart disease is ventricular tachycardia (VT). Here we show that toll-like receptor 2 (TLR2) and NLRP3 inflammasome activation in cardiac macrophages mediate the production of IL-1ß in DM mice. IL-1ß causes prolongation of the action potential duration, induces a decrease in potassium current and an increase in calcium sparks in cardiomyocytes, which are changes that underlie arrhythmia propensity. IL-1ß-induced spontaneous contractile events are associated with CaMKII oxidation and phosphorylation. We further show that DM-induced arrhythmias can be successfully treated by inhibiting the IL-1ß axis with either IL-1 receptor antagonist or by inhibiting the NLRP3 inflammasome. Our results establish IL-1ß as an inflammatory connection between metabolic dysfunction and arrhythmias in DM.


Assuntos
Diabetes Mellitus Experimental/imunologia , Interleucina-1beta/imunologia , Macrófagos/imunologia , Miócitos Cardíacos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Taquicardia Ventricular/imunologia , Receptor 2 Toll-Like/imunologia , Potenciais de Ação , Animais , Antirreumáticos/farmacologia , Arritmias Cardíacas/etiologia , Arritmias Cardíacas/imunologia , Arritmias Cardíacas/metabolismo , Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Caspase 1/metabolismo , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Inflamassomos/antagonistas & inibidores , Proteína Antagonista do Receptor de Interleucina 1/farmacologia , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Camundongos , Camundongos Transgênicos , Contração Miocárdica , Miócitos Cardíacos/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Potássio/metabolismo , Receptores de Interleucina-1/antagonistas & inibidores , Receptores de Interleucina-1/genética , Receptores de Interleucina-1/imunologia , Taquicardia Ventricular/etiologia , Taquicardia Ventricular/metabolismo , Receptor 2 Toll-Like/genética
9.
Macromol Biosci ; 16(9): 1348-59, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27276166

RESUMO

Mimicking the complex intricacies of the extra cellular matrix including 3D configurations and aligned fibrous structures were traditionally perused for producing cartilage tissue from stem cells. This study shows that human adipose derived mesenchymal stem cells (hADMSCs) establishes significant chondrogenic differentiation and may generate quality cartilage when cultured on 2D and randomly oriented fibrinogen/poly-lactic acid nanofibers compared to 3D sandwich-like environments. The adhering cells show well-developed focal adhesion complexes and actin cytoskeleton arrangements confirming the proper cellular interaction with either random or aligned nanofibers. However, quantitative reverse transcription-polymerase chain reaction analysis for Collagen 2 and Collagen 10 genes expression confirms favorable chondrogenic response of hADMSCs on random nanofibers and shows substantially higher efficacy of their differentiation in 2D configuration versus 3D constructs. These findings introduce a new direction for cartilage tissue engineering through providing a simple platform for the routine generation of transplantable stem cells derived articular cartilage replacement that might improve joint function.


Assuntos
Cartilagem Articular/citologia , Diferenciação Celular/efeitos dos fármacos , Fibrinogênio/farmacologia , Células-Tronco Mesenquimais/citologia , Nanofibras/química , Tecido Adiposo/citologia , Animais , Bovinos , Forma Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Condrogênese/efeitos dos fármacos , Colágeno/genética , Colágeno/metabolismo , Humanos , Imageamento Tridimensional , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Nanofibras/ultraestrutura , Poliésteres/química , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA