Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
2.
Nat Commun ; 13(1): 6922, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36376307

RESUMO

SARS-CoV-2 infection, and resulting disease, COVID-19, has a high mortality amongst patients with haematological malignancies. Global vaccine rollouts have reduced hospitalisations and deaths, but vaccine efficacy in patients with haematological malignancies is known to be reduced. The UK-strategy offered a third, mRNA-based, vaccine as an extension to the primary course in these patients. The MARCH database is a retrospective observational study of serological responses in patients with blood disorders. Here we present data on 381 patients with haematological malignancies. By comparison with healthy controls, we report suboptimal responses following two primary vaccines, with significantly enhanced responses following the third primary dose. These responses however are heterogeneous and determined by haematological malignancy sub-type and therapy. We identify a group of patients with continued suboptimal vaccine responses who may benefit from additional doses, prophylactic extended half-life neutralising monoclonal therapies (nMAB) or prompt nMAB treatment in the event of SARS-CoV-2 infection.


Assuntos
COVID-19 , Neoplasias Hematológicas , Vacinas Virais , Humanos , Vacinas contra COVID-19 , SARS-CoV-2 , COVID-19/prevenção & controle , Formação de Anticorpos , Neoplasias Hematológicas/terapia , Anticorpos Antivirais , Vacinas de mRNA
3.
Blood Adv ; 5(20): 4112-4124, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34432872

RESUMO

Myelodysplastic syndrome (MDS) is a hematological malignancy characterized by blood cytopenias and predisposition to acute myeloid leukemia (AML). Therapies for MDS are lacking, particularly those that have an impact in the early stages of disease. We developed a model of MDS in zebrafish with knockout of Rps14, the primary mediator of the anemia associated with del(5q) MDS. These mutant animals display dose- and age-dependent abnormalities in hematopoiesis, culminating in bone marrow failure with dysplastic features. We used Rps14 knockdown to undertake an in vivo small-molecule screening, to identify compounds that ameliorate the MDS phenotype, and we identified imiquimod, an agonist of Toll-like receptor-7 (TLR7) and TLR8. Imiquimod alleviates anemia by promoting hematopoietic stem and progenitor cell expansion and erythroid differentiation, the mechanism of which is dependent on TLR7 ligation and Myd88. TLR7 activation in this setting paradoxically promoted an anti-inflammatory gene signature, indicating cross talk via TLR7 between proinflammatory pathways endogenous to Rps14 loss and the NF-κB pathway. Finally, in highly purified human bone marrow samples from anemic patients, imiquimod led to an increase in erythroid output from myeloerythroid progenitors and common myeloid progenitors. Our findings have both specific implications for the development of targeted therapeutics for del(5q) MDS and wider significance identifying a potential role for TLR7 ligation in modifying anemia.


Assuntos
Síndromes Mielodisplásicas , Peixe-Zebra , Animais , Hematopoese , Humanos , Síndromes Mielodisplásicas/genética , Transdução de Sinais , Receptor 7 Toll-Like/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA