Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 10(1): 3756, 2019 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-31434897

RESUMO

Under physiological conditions, strength and persistence of memory must be regulated in order to produce behavioral flexibility. In fact, impairments in memory flexibility are associated with pathologies such as post-traumatic stress disorder or autism; however, the underlying mechanisms that enable memory flexibility are still poorly understood. Here, we identify transcriptional repressor Wilm's Tumor 1 (WT1) as a critical synaptic plasticity regulator that decreases memory strength, promoting memory flexibility. WT1 is activated in the hippocampus following induction of long-term potentiation (LTP) or learning. WT1 knockdown enhances CA1 neuronal excitability, LTP and long-term memory whereas its overexpression weakens memory retention. Moreover, forebrain WT1-deficient mice show deficits in both reversal, sequential learning tasks and contextual fear extinction, exhibiting impaired memory flexibility. We conclude that WT1 limits memory strength or promotes memory weakening, thus enabling memory flexibility, a process that is critical for learning from new experiences.


Assuntos
Hipocampo/fisiologia , Memória/fisiologia , Proteínas Repressoras/metabolismo , Animais , Comportamento Animal/fisiologia , Região CA1 Hipocampal/metabolismo , Medo/fisiologia , Potenciação de Longa Duração/fisiologia , Masculino , Transtornos da Memória/patologia , Camundongos , Camundongos Knockout , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Ratos , Ratos Sprague-Dawley , Proteínas Repressoras/genética , Proteínas WT1
2.
Biol Psychiatry ; 86(6): 474-482, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31101319

RESUMO

BACKGROUND: Clinical studies suggest that heightened peripheral inflammation contributes to the pathogenesis of stress-related disorders, including major depressive disorder. However, the molecular mechanisms within peripheral immune cells that mediate enhanced stress vulnerability are not well known. Because microRNAs (miRs) are important regulators of immune response, we sought to examine their role in mediating inflammatory and behavioral responses to repeated social defeat stress (RSDS), a mouse model of stress vulnerability that produces susceptible and resilient phenotypes. METHODS: We isolated Ly6chigh monocytes via fluorescence-activated cell sorting in the blood of susceptible and resilient mice following RSDS and profiled miR expression via quantitative real-time polymerase chain reaction. Bone marrow chimeric mice were generated to confirm a causal role of the miR-106b∼25 cluster in bone marrow-derived leukocytes in mediating stress resilience versus susceptibility. RESULTS: We found that RSDS produces an increase in circulating Ly6chigh inflammatory monocytes in both susceptible and resilient mice. We next investigated whether intrinsic leukocyte posttranscriptional mechanisms contribute to individual differences in stress response and the resilient phenotype. Of the miRs profiled in our panel, eight were significantly regulated by RSDS within Ly6chigh monocytes, including miR-25-3p, a member of the miR-106b∼25 cluster. Selective knockout of the miR-106b∼25 cluster in peripheral leukocytes promoted behavioral resilience to RSDS. CONCLUSIONS: Our results identify the miR-106b∼25 cluster as a key regulator of stress-induced inflammation and depression that may represent a novel therapeutic target for drug development.


Assuntos
Comportamento Animal , Depressão/metabolismo , MicroRNAs/metabolismo , Resiliência Psicológica , Estresse Psicológico/metabolismo , Animais , Transplante de Medula Óssea , Depressão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/genética , Monócitos/metabolismo , Estresse Psicológico/patologia , Quimeras de Transplante
3.
J Neurosci ; 38(26): 5913-5924, 2018 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-29891732

RESUMO

A growing number of studies implicate the brain's reward circuitry in aggressive behavior. However, the cellular and molecular mechanisms within brain reward regions that modulate the intensity of aggression as well as motivation for it have been underexplored. Here, we investigate the cell-type-specific influence of ΔFosB, a transcription factor known to regulate a range of reward and motivated behaviors, acting in the nucleus accumbens (NAc), a key reward region, in male aggression in mice. We show that ΔFosB is specifically increased in dopamine D1 receptor (Drd1)-expressing medium spiny neurons (D1-MSNs) in NAc after repeated aggressive encounters. Viral-mediated induction of ΔFosB selectively in D1-MSNs of NAc intensifies aggressive behavior without affecting the preference for the aggression-paired context in a conditioned place preference (CPP) assay. In contrast, ΔFosB induction selectively in D2-MSNs reduces the time spent exploring the aggression-paired context during CPP without affecting the intensity of aggression per se. These data strongly support a dissociable cell-type-specific role for ΔFosB in the NAc in modulating aggression and aggression reward.SIGNIFICANCE STATEMENT Aggressive behavior is associated with several neuropsychiatric disorders and can be disruptive for affected individuals as well as their victims. Studies have shown a positive reinforcement mechanism underlying aggressive behavior that shares many common features with drug addiction. Here, we explore the cell-type-specific role of the addiction-associated transcription factor ΔFosB in the nucleus accumbens in aggression. We found that ΔFosB expression promotes aggressive behavior, effects that are dissociable from its effects on aggression reward. This finding is a significant first step in identifying therapeutic targets for the reduction of aggressive behavior across a range of neuropsychiatric illnesses.


Assuntos
Agressão/fisiologia , Núcleo Accumbens/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Animais , Comportamento Animal/fisiologia , Masculino , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo , Recompensa
4.
Nat Commun ; 9(1): 1116, 2018 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-29549264

RESUMO

Most people exposed to stress do not develop depression. Animal models have shown that stress resilience is an active state that requires broad transcriptional adaptations, but how this homeostatic process is regulated remains poorly understood. In this study, we analyze upstream regulators of genes differentially expressed after chronic social defeat stress. We identify estrogen receptor α (ERα) as the top regulator of pro-resilient transcriptional changes in the nucleus accumbens (NAc), a key brain reward region implicated in depression. In accordance with these findings, nuclear ERα protein levels are altered by stress in male and female mice. Further, overexpression of ERα in the NAc promotes stress resilience in both sexes. Subsequent RNA-sequencing reveals that ERα overexpression in NAc reproduces the transcriptional signature of resilience in male, but not female, mice. These results indicate that NAc ERα is an important regulator of pro-resilient transcriptional changes, but with sex-specific downstream targets.


Assuntos
Adaptação Psicológica/fisiologia , Comportamento Animal/fisiologia , Depressão/fisiopatologia , Receptor alfa de Estrogênio/metabolismo , Núcleo Accumbens/metabolismo , Estresse Psicológico/fisiopatologia , Animais , Receptor alfa de Estrogênio/genética , Feminino , Perfilação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Fatores Sexuais , Transcriptoma/genética
5.
Nat Commun ; 9(1): 477, 2018 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-29396460

RESUMO

Major depressive disorder is associated with abnormalities in the brain and the immune system. Chronic stress in animals showed that epigenetic and inflammatory mechanisms play important roles in mediating resilience and susceptibility to depression. Here, through a high-throughput screening, we identify two phytochemicals, dihydrocaffeic acid (DHCA) and malvidin-3'-O-glucoside (Mal-gluc) that are effective in promoting resilience against stress by modulating brain synaptic plasticity and peripheral inflammation. DHCA/Mal-gluc also significantly reduces depression-like phenotypes in a mouse model of increased systemic inflammation induced by transplantation of hematopoietic progenitor cells from stress-susceptible mice. DHCA reduces pro-inflammatory interleukin 6 (IL-6) generations by inhibiting DNA methylation at the CpG-rich IL-6 sequences introns 1 and 3, while Mal-gluc modulates synaptic plasticity by increasing histone acetylation of the regulatory sequences of the Rac1 gene. Peripheral inflammation and synaptic maladaptation are in line with newly hypothesized clinical intervention targets for depression that are not addressed by currently available antidepressants.


Assuntos
Antocianinas/farmacologia , Ácidos Cafeicos/farmacologia , Epigênese Genética , Glucosídeos/farmacologia , Inflamação/genética , Plasticidade Neuronal/genética , Estresse Psicológico/genética , Animais , Antocianinas/administração & dosagem , Ácidos Cafeicos/administração & dosagem , Ilhas de CpG/efeitos dos fármacos , Depressão/tratamento farmacológico , Avaliação Pré-Clínica de Medicamentos/métodos , Glucosídeos/administração & dosagem , Interleucina-6/antagonistas & inibidores , Interleucina-6/genética , Antígenos Comuns de Leucócito/genética , Masculino , Camundongos Endogâmicos C57BL , Plasticidade Neuronal/efeitos dos fármacos , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Polifenóis/farmacologia , Comportamento Social , Estresse Psicológico/tratamento farmacológico , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo
6.
Nat Neurosci ; 20(12): 1752-1760, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29184215

RESUMO

Studies suggest that heightened peripheral inflammation contributes to the pathogenesis of major depressive disorder. We investigated the effect of chronic social defeat stress, a mouse model of depression, on blood-brain barrier (BBB) permeability and infiltration of peripheral immune signals. We found reduced expression of the endothelial cell tight junction protein claudin-5 (Cldn5) and abnormal blood vessel morphology in nucleus accumbens (NAc) of stress-susceptible but not resilient mice. CLDN5 expression was also decreased in NAc of depressed patients. Cldn5 downregulation was sufficient to induce depression-like behaviors following subthreshold social stress whereas chronic antidepressant treatment rescued Cldn5 loss and promoted resilience. Reduced BBB integrity in NAc of stress-susceptible or mice injected with adeno-associated virus expressing shRNA against Cldn5 caused infiltration of the peripheral cytokine interleukin-6 (IL-6) into brain parenchyma and subsequent expression of depression-like behaviors. These findings suggest that chronic social stress alters BBB integrity through loss of tight junction protein Cldn5, promoting peripheral IL-6 passage across the BBB and depression.


Assuntos
Depressão/patologia , Depressão/psicologia , Meio Social , Estresse Psicológico/patologia , Estresse Psicológico/psicologia , Inibidores da Captação Adrenérgica/farmacologia , Animais , Ansiedade/psicologia , Comportamento Animal , Barreira Hematoencefálica/patologia , Claudina-5/biossíntese , Claudina-5/genética , Comportamento Alimentar , Preferências Alimentares , Imipramina/farmacologia , Interleucina-6/biossíntese , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Núcleo Accumbens/patologia , Natação/psicologia , Proteínas de Junções Íntimas/metabolismo
7.
Nat Neurosci ; 18(5): 690-7, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25821913

RESUMO

The developing mammalian brain is destined for a female phenotype unless exposed to gonadal hormones during a perinatal sensitive period. It has been assumed that the undifferentiated brain is masculinized by direct induction of transcription by ligand-activated nuclear steroid receptors. We found that a primary effect of gonadal steroids in the highly sexually dimorphic preoptic area (POA) is to reduce activity of DNA methyltransferase (Dnmt) enzymes, thereby decreasing DNA methylation and releasing masculinizing genes from epigenetic repression. Pharmacological inhibition of Dnmts mimicked gonadal steroids, resulting in masculinized neuronal markers and male sexual behavior in female rats. Conditional knockout of the de novo Dnmt isoform, Dnmt3a, also masculinized sexual behavior in female mice. RNA sequencing revealed gene and isoform variants modulated by methylation that may underlie the divergent reproductive behaviors of males versus females. Our data show that brain feminization is maintained by the active suppression of masculinization via DNA methylation.


Assuntos
Encéfalo/crescimento & desenvolvimento , DNA (Citosina-5-)-Metiltransferases/fisiologia , Metilação de DNA , DNA Intergênico/genética , Transtornos do Desenvolvimento Sexual/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas do Tecido Nervoso/fisiologia , Área Pré-Óptica/fisiopatologia , Caracteres Sexuais , Diferenciação Sexual/fisiologia , Animais , Copulação/efeitos dos fármacos , Copulação/fisiologia , Ilhas de CpG , Citidina/análogos & derivados , Citidina/farmacologia , DNA (Citosina-5-)-Metiltransferases/antagonistas & inibidores , DNA (Citosina-5-)-Metiltransferases/deficiência , DNA (Citosina-5-)-Metiltransferases/genética , DNA Metiltransferase 3A , Transtornos do Desenvolvimento Sexual/fisiopatologia , Estradiol/fisiologia , Feminino , Masculino , Camundongos , Proteínas dos Microfilamentos/análise , Proteínas do Tecido Nervoso/análise , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Ftalimidas/farmacologia , Área Pré-Óptica/enzimologia , Isoformas de Proteínas/biossíntese , Isoformas de Proteínas/genética , Ratos , Ratos Sprague-Dawley , Testosterona/farmacologia , Testosterona/fisiologia , Triptofano/análogos & derivados , Triptofano/farmacologia
8.
Nat Neurosci ; 18(3): 415-22, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25643298

RESUMO

Brain-derived neurotrophic factor (BDNF) has a crucial role in modulating neural and behavioral plasticity to drugs of abuse. We found a persistent downregulation of exon-specific Bdnf expression in the ventral tegmental area (VTA) in response to chronic opiate exposure, which was mediated by specific epigenetic modifications at the corresponding Bdnf gene promoters. Exposure to chronic morphine increased stalling of RNA polymerase II at these Bdnf promoters in VTA and altered permissive and repressive histone modifications and occupancy of their regulatory proteins at the specific promoters. Furthermore, we found that morphine suppressed binding of phospho-CREB (cAMP response element binding protein) to Bdnf promoters in VTA, which resulted from enrichment of trimethylated H3K27 at the promoters, and that decreased NURR1 (nuclear receptor related-1) expression also contributed to Bdnf repression and associated behavioral plasticity to morphine. Our findings suggest previously unknown epigenetic mechanisms of morphine-induced molecular and behavioral neuroadaptations.


Assuntos
Analgésicos Opioides/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Epigênese Genética/fisiologia , Área Tegmentar Ventral/metabolismo , Analgésicos Opioides/farmacologia , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Cocaína/farmacologia , Condicionamento Operante/efeitos dos fármacos , Inibidores da Captação de Dopamina/farmacologia , Proteína Potenciadora do Homólogo 2 de Zeste , Epigênese Genética/efeitos dos fármacos , Dependência de Heroína/patologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Atividade Motora/efeitos dos fármacos , Atividade Motora/genética , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo , Mudanças Depois da Morte , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Ratos , Ratos Sprague-Dawley , Área Tegmentar Ventral/efeitos dos fármacos
9.
Proc Natl Acad Sci U S A ; 111(45): 16136-41, 2014 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-25331895

RESUMO

Depression and anxiety disorders are associated with increased release of peripheral cytokines; however, their functional relevance remains unknown. Using a social stress model in mice, we find preexisting individual differences in the sensitivity of the peripheral immune system that predict and promote vulnerability to social stress. Cytokine profiles were obtained 20 min after the first social stress exposure. Of the cytokines regulated by stress, IL-6 was most highly up-regulated only in mice that ultimately developed a susceptible behavioral phenotype following a subsequent chronic stress, and levels remained elevated for at least 1 mo. We confirmed a similar elevation of serum IL-6 in two separate cohorts of patients with treatment-resistant major depressive disorder. Before any physical contact in mice, we observed individual differences in IL-6 levels from ex vivo stimulated leukocytes that predict susceptibility versus resilience to a subsequent stressor. To shift the sensitivity of the peripheral immune system to a pro- or antidepressant state, bone marrow (BM) chimeras were generated by transplanting hematopoietic progenitor cells from stress-susceptible mice releasing high IL-6 or from IL-6 knockout (IL-6(-/-)) mice. Stress-susceptible BM chimeras exhibited increased social avoidance behavior after exposure to either subthreshold repeated social defeat stress (RSDS) or a purely emotional stressor termed witness defeat. IL-6(-/-) BM chimeric and IL-6(-/-) mice, as well as those treated with a systemic IL-6 monoclonal antibody, were resilient to social stress. These data establish that preexisting differences in stress-responsive IL-6 release from BM-derived leukocytes functionally contribute to social stress-induced behavioral abnormalities.


Assuntos
Transtornos de Ansiedade/imunologia , Comportamento Animal , Interleucina-6/imunologia , Estresse Psicológico/imunologia , Aloenxertos , Animais , Transtornos de Ansiedade/genética , Transtornos de Ansiedade/patologia , Transplante de Medula Óssea , Suscetibilidade a Doenças/imunologia , Suscetibilidade a Doenças/patologia , Interleucina-6/genética , Camundongos , Camundongos Knockout , Estresse Psicológico/genética , Estresse Psicológico/patologia , Fatores de Tempo , Quimeras de Transplante/genética , Quimeras de Transplante/imunologia
10.
Biol Psychiatry ; 70(5): 408-14, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21679926

RESUMO

BACKGROUND: There has been recent interest in the possibility that epigenetic mechanisms might contribute to the transgenerational transmission of stress-induced vulnerability. Here, we focused on possible paternal transmission with the social defeat stress paradigm. METHODS: Adult male mice exposed to chronic social defeat stress or control nondefeated mice were bred with normal female mice, and their offspring were assessed behaviorally for depressive- and anxiety-like measures. Plasma levels of corticosterone and vascular endothelial growth factor were also assayed. To directly assess the role of epigenetic mechanisms, we used in vitro fertilization (IVF); behavioral assessments were conducted on offspring of mice from IVF-control and IVF-defeated fathers. RESULTS: We show that both male and female offspring from defeated fathers exhibit increased measures of several depression- and anxiety-like behaviors. The male offspring of defeated fathers also display increased baseline plasma levels of corticosterone and decreased levels of vascular endothelial growth factor. However, most of these behavioral changes were not observed when offspring were generated through IVF. CONCLUSIONS: These results suggest that, although behavioral adaptations that occur after chronic social defeat stress can be transmitted from the father to his male and female F1 progeny, only very subtle changes might be transmitted epigenetically under the conditions tested.


Assuntos
Ansiedade/psicologia , Depressão/psicologia , Pai/psicologia , Estresse Psicológico/psicologia , Animais , Ansiedade/sangue , Corticosterona/sangue , Depressão/sangue , Modelos Animais de Doenças , Relações Pai-Filho , Feminino , Fertilização in vitro/métodos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Comportamento Social , Estresse Psicológico/metabolismo , Fator A de Crescimento do Endotélio Vascular/sangue
11.
Horm Behav ; 48(2): 163-71, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15885691

RESUMO

Puberty is a time of significant change in preparation for adulthood. Here, we examined how stressful experience affects cognitive and related hormonal responses in male and female rats prior to, during and after puberty. Groups were exposed to an acute stressor of brief periodic tailshocks and tested 24 h later in an associative memory task of trace eyeblink conditioning. Exposure to the stressor did not alter conditioning in males or females prior to puberty but enhanced conditioning in both males and females during puberty. The enhancement occurred in pubescent females irrespective of the estrous cycle. In adulthood, sex differences in trace conditioning and the response to stress emerged: females outperformed males under unstressed conditions, but after stressor exposure, trace conditioning in females was impaired whereas that in males was enhanced. These differences were not related to changes in gross motor activity or other nonspecific measures of performance. The effects of acute stress on corticosterone, estradiol, progesterone, and testosterone were also measured. Stressor exposure increased the concentration of corticosterone in all age groups, although sex differences were only evident in adults. All reproductive hormones except estradiol increased with age in a predictable and sex dependent fashion and none were affected by stressor exposure. Estradiol decreased in male rats across age, and remained stable for female rats. Together, these data indicate that males and female respond similarly to learning opportunities and stressful experience before and during puberty; it is in adulthood that sex differences and the opposite responses to stress arise.


Assuntos
Aprendizagem/fisiologia , Maturidade Sexual/fisiologia , Estresse Psicológico/psicologia , Envelhecimento/psicologia , Animais , Piscadela/fisiologia , Condicionamento Clássico/efeitos dos fármacos , Condicionamento Clássico/fisiologia , Estrogênios/farmacologia , Ciclo Estral/fisiologia , Feminino , Masculino , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Progesterona/farmacologia , Ratos , Ratos Sprague-Dawley , Caracteres Sexuais , Testosterona/farmacologia , Vagina/citologia , Vagina/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA