Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Pharm ; 18(9): 3464-3474, 2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34448393

RESUMO

Optimal cytoreduction for ovarian cancer is often challenging because of aggressive tumor biology and advanced stage. It is a critical issue since the extent of residual disease after surgery is the key predictor of ovarian cancer patient survival. For a limited number of cancers, fluorescence-guided surgery has emerged as an effective aid for tumor delineation and effective cytoreduction. The intravenously administered fluorescent agent, most commonly indocyanine green (ICG), accumulates preferentially in tumors, which are visualized under a fluorescent light source to aid surgery. Insufficient tumor specificity has limited the broad application of these agents in surgical oncology including for ovarian cancer. In this study, we developed a novel tumor-selective fluorescent agent by chemically linking ICG to mouse monoclonal antibody 10D7 that specifically recognizes an ovarian cancer-enriched cell surface receptor, CUB-domain-containing protein 1 (CDCP1). 10D7ICG has high affinity for purified recombinant CDCP1 and CDCP1 that is located on the surface of ovarian cancer cells in vitro and in vivo. Our results show that intravenously administered 10D7ICG accumulates preferentially in ovarian cancer, permitting visualization of xenograft tumors in mice. The data suggest CDCP1 as a rational target for tumor-specific fluorescence-guided surgery for ovarian cancer.


Assuntos
Anticorpos Monoclonais/administração & dosagem , Moléculas de Adesão Celular/antagonistas & inibidores , Corantes Fluorescentes/administração & dosagem , Imagem Óptica/métodos , Neoplasias Ovarianas/diagnóstico , Animais , Anticorpos Monoclonais/química , Antígenos de Neoplasias , Linhagem Celular Tumoral , Feminino , Corantes Fluorescentes/química , Humanos , Verde de Indocianina/administração & dosagem , Verde de Indocianina/química , Injeções Intravenosas , Camundongos , Neoplasias Ovarianas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Expert Rev Med Devices ; 6(6): 621-40, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19911874

RESUMO

Tissue engineering is a rapidly evolving field of research that has yet to fulfil its promise in the translation and potential application of adult stem cells in clinical practice. Recently, it has become apparent that specific adult stem cells are capable of transdifferentiation. The successful application of adult stem cells is thought to be central in creating truly biomimetic tissue. Although still most widely utilized, research suggests that in the future, bone marrow-derived stem cells may no longer be considered the most suitable candidates for use in tissue engineering. Independent studies have successfully engineered a range of tissues in vitro and in vivo using hair follicle- and adipose-derived stem cells. Owing to their potency, relative abundance and noninvasive extraction, these populations may be the most promising studied to date. This review aims to discuss these candidate adult stem cell populations in an attempt to assess the most promising avenues of research.


Assuntos
Células-Tronco Adultas/citologia , Células da Medula Óssea/citologia , Engenharia Tecidual/métodos , Adipócitos/citologia , Animais , Osso e Ossos/patologia , Cartilagem/patologia , Técnicas de Cultura de Células/métodos , Diferenciação Celular , Células-Tronco Hematopoéticas/citologia , Humanos , Pele/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA