Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 95(33): 12223-12231, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37566555

RESUMO

The rational design and increasing industrial use of nanomaterials require a reliable characterization of their physicochemical key properties like size, size distribution, shape, and surface chemistry. This calls for nanoscale reference materials (nanoRMs) for the validation and standardization of commonly used characterization methods closely matching real-world nonspherical nano-objects. This encouraged us to develop a nonspherical nanoRM of very small size consisting of 8 nm iron oxide nanocubes (BAM-N012) to complement spherical gold, silica, and polymer nanoRMs. In the following, the development and production of this nanoRM are highlighted including the characterization by transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS) as complementary methods for size and shape parameters, homogeneity and stability studies, and calculation of a complete uncertainty budget of the size features. The determination of the nanocubes' edge length by TEM and SAXS allows a method comparison. In addition, SAXS measurements can also provide the mean particle number density and the mass concentration. The certified size parameters, area equivalent circular diameter and square edge length, determined by TEM with a relative expanded uncertainty below 9%, are metrologically traceable to a natural constant for length, the very precisely known (111) lattice spacing of silicon. Cubic BAM-N012 qualifies as a certified nanoRM for estimating the precision and trueness, validation, and quality assurance of particle size and shape measurements with electron microscopy and SAXS as well as other sizing methods suitable for nanomaterials. The production of this new iron oxide nanocube RM presents an important achievement for the nanomaterial community, nanomaterial manufacturers, and regulators.

2.
Food Chem Toxicol ; 127: 89-100, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30849403

RESUMO

The aim of this study was to evaluate cytotoxicity (WST-1 assay), LDH release (LDH assay) and genotoxicity (Comet assay) of three engineered TiO2-NPs with different shapes (bipyramids, rods, platelets) in comparison with two commercial TiO2-NPs (P25, food grade). After NPs characterization (SEM/T-SEM and DLS), biological effects of NPs were assessed on BEAS-2B cells in presence/absence of light. The cellular uptake of NPs was analyzed using Raman spectroscopy. The cytotoxic effects were mostly slight. After light exposure, the largest cytotoxicity (WST-1 assay) was observed for rods; P25, bipyramids and platelets showed a similar effect; no effect was induced by food grade. No LDH release was detected, confirming the low effect on plasma membrane. Food grade and platelets induced direct genotoxicity while P25, food grade and platelets caused oxidative DNA damage. No genotoxic or oxidative damage was induced by bipyramids and rods. Biological effects were overall lower in darkness than after light exposure. Considering that only food grade, P25 and platelets (more agglomerated) were internalized by cells, the uptake resulted correlated with genotoxicity. In conclusion, cytotoxicity of NPs was low and affected by shape and light exposure, while genotoxicity was influenced by cellular-uptake and aggregation tendency.


Assuntos
Brônquios/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaio Cometa , Células Epiteliais/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Titânio/toxicidade , Brônquios/citologia , Brônquios/enzimologia , Linhagem Celular , Dano ao DNA , Células Epiteliais/enzimologia , Humanos , L-Lactato Desidrogenase/metabolismo , Microscopia Eletrônica de Transmissão e Varredura , Estresse Oxidativo/efeitos dos fármacos , Tamanho da Partícula , Análise Espectral Raman/métodos
3.
Sci Rep ; 8(1): 6278, 2018 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-29674731

RESUMO

Cost-effective water cleaning approaches using improved treatment technologies, for instance based on catalytic processes with high activity catalysts, are urgently needed. The aim of our study was to synthesize efficient Fenton-like photo-catalysts for rapid degradation of persistent organic micropollutants in aqueous medium. Iron-based nanomaterials were chemically synthesized through simple procedures by immobilization of either iron(II) oxalate (FeO) or iron(III) citrate (FeC) on magnetite (M) nanoparticles stabilized with polyethylene glycol (PEG). Various investigation techniques were performed in order to characterize the freshly prepared catalysts. By applying advanced oxidation processes, the effect of catalyst dosage, hydrogen peroxide concentration and UV-A light exposure were examined for Bisphenol A (BPA) conversion, at laboratory scale, in mild conditions. The obtained results revealed that BPA degradation was rapidly enhanced in the presence of low-concentration H2O2, as well as under UV-A light, and is highly dependent on the surface characteristics of the catalyst. Complete photo-degradation of BPA was achieved over the M/PEG/FeO catalyst in less than 15 minutes. Based on the catalytic performance, a hierarchy of the tested catalysts was established: M/PEG/FeO > M/PEG/FeC > M/PEG. The results of cytotoxicity assay using MCF-7 cells indicated that the aqueous samples after treatment are less cytotoxic.


Assuntos
Magnetismo , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Animais , Catálise , Embrião não Mamífero/efeitos dos fármacos , Compostos Férricos/química , Óxido Ferroso-Férrico/química , Peróxido de Hidrogênio/química , Cinética , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Ácido Oxálico/química , Polietilenoglicóis/química , Espectrometria por Raios X , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X , Peixe-Zebra/embriologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA