Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
1.
J Cachexia Sarcopenia Muscle ; 15(3): 868-882, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38689513

RESUMO

BACKGROUND: Sarcopenia is characterized by loss of skeletal muscle mass and function, and is a major risk factor for disability and independence in the elderly. Effective medication is not available. Dietary restriction (DR) has been found to attenuate aging and aging-related diseases, including sarcopenia, but the mechanism of both DR and sarcopenia are incompletely understood. METHODS: In this study, mice body weight, fore and all limb grip strength, and motor learning and coordination performance were first analysed to evaluate the DR effects on muscle functioning. Liquid chromatography-mass spectrometry (LC-MS) was utilized for the metabolomics study of the DR effects on sarcopenia in progeroid DNA repair-deficient Ercc1∆/- and Xpg-/- mice, to identify potential biomarkers for attenuation of sarcopenia. RESULTS: Muscle mass was significantly (P < 0.05) decreased (13-20%) by DR; however, the muscle quality was improved with retained fore limbs and all limbs grip strength in Ercc1∆/- and Xpg-/- mice. The LC-MS results revealed that metabolites and pathways related to oxidative-stress, that is, GSSG/GSH (P < 0.01); inflammation, that is, 9-HODE, 11-HETE (P < 0.05), PGE2, PGD2, and TXB2 (P < 0.01); and muscle growth (PGF2α) (P < 0.01) and regeneration stimulation (PGE2) (P < 0.05) are significantly downregulated by DR. On the other hand, anti-inflammatory indicator and several related metabolites, that is, ß-hydroxybutyrate (P < 0.01), 14,15-DiHETE (P < 0.0001), 8,9-EET, 12,13-DiHODE, and PGF1 (P < 0.05); consumption of sources of energy (i.e., muscle and liver glycogen); and energy production pathways, that is, glycolysis (glucose, glucose-6-P, fructose-6-P) (P < 0.01), tricarboxylic acid cycle (succinyl-CoA, malate) (P < 0.001), and gluconeogenesis-related metabolite, alanine (P < 0.01), are significantly upregulated by DR. The notably (P < 0.01) down-modulated muscle growth (PGF2α) and regeneration (PGE2) stimulation metabolite and the increased consumption of glycogen in muscle and liver may be related to the significantly (P < 0.01) lower body weight and muscle mass by DR. The downregulated oxidative stress, pro-inflammatory mediators, and upregulated anti-inflammatory metabolites resulted in a lower energy expenditure, which contributed to enhanced muscle quality together with upregulated energy production pathways by DR. The improved muscle quality may explain why grip strength is maintained and motor coordination and learning performance are improved by DR in Ercc1∆/- and Xpg-/- mice. CONCLUSIONS: This study provides fundamental supporting information on biomarkers and pathways related to the attenuation of sarcopenia, which might facilitate its diagnosis, prevention, and clinical therapy.


Assuntos
Metabolômica , Sarcopenia , Animais , Camundongos , Sarcopenia/metabolismo , Metabolômica/métodos , Senilidade Prematura/metabolismo , Metaboloma , Camundongos Knockout , Modelos Animais de Doenças , Reparo do DNA , Masculino , Restrição Calórica/métodos , Músculo Esquelético/metabolismo , Proteínas de Ligação a DNA , Endonucleases
2.
bioRxiv ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38766154

RESUMO

Substantial numbers of somatic mutations have been found to accumulate with age in different human tissues. Clonal cellular amplification of some of these mutations can cause cancer and other diseases. However, it is as yet unclear if and to what extent an increased burden of random mutations can affect cellular function without clonal amplification. We tested this in cell culture, which avoids the limitation that an increased mutation burden in vivo typically leads to cancer. We performed single-cell whole-genome sequencing of primary fibroblasts from DNA mismatch repair (MMR) deficient Msh2-/- mice and littermate control animals after long-term passaging. Apart from analyzing somatic mutation burden we analyzed clonality, mutational signatures, and hotspots in the genome, characterizing the complete landscape of somatic mutagenesis in normal and MMR-deficient mouse primary fibroblasts during passaging. While growth rate of Msh2-/- fibroblasts was not significantly different from the controls, the number of de novo single-nucleotide variants (SNVs) increased linearly up until at least 30,000 SNVs per cell, with the frequency of small insertions and deletions (INDELs) plateauing in the Msh2-/- fibroblasts to about 10,000 INDELS per cell. We provide evidence for negative selection and large-scale mutation-driven population changes, including significant clonal expansion of preexisting mutations and widespread cell-strain-specific hotspots. Overall, our results provide evidence that increased somatic mutation burden drives significant cell evolutionary changes in a dynamic cell culture system without significant effects on growth. Since similar selection processes against mutations preventing organ and tissue dysfunction during aging are difficult to envision, these results suggest that increased somatic mutation burden can play a causal role in aging and diseases other than cancer.

3.
Nature ; 627(8002): 29, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38383649
4.
Lancet Healthy Longev ; 4(4): e155-e165, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37003274

RESUMO

BACKGROUND: Childhood cancer survivors appear to be at increased risk of frailty and sarcopenia, but evidence on the occurrence of and high-risk groups for these aging phenotypes is scarce, especially in European survivors. The aim of this cross-sectional study was to assess the prevalence of and explore risk factors for pre-frailty, frailty, and sarcopenia in a national cohort of Dutch childhood cancer survivors diagnosed between 1963 and 2001. METHODS: Eligible individuals (alive at the time of study, living in the Netherlands, age 18-45 years, and had not previously declined to participate in a late-effects study) from the Dutch Childhood Cancer Survivor Study (DCCSS-LATER) cohort were invited to take part in this cross-sectional study. We defined pre-frailty and frailty according to modified Fried criteria, and sarcopenia according to the European Working Group on Sarcopenia in Older People 2 definition. Associations between these conditions and demographic and treatment-related as well as endocrine and lifestyle-related factors were estimated with two separate multivariable logistic regression models in survivors with any frailty measurement or complete sarcopenia measurements. FINDINGS: 3996 adult survivors of the DCCSS-LATER cohort were invited to participate in this cross-sectional study. 1993 non-participants were excluded due to lack of response or a decline to participate and 2003 (50·1%) childhood cancer survivors aged 18-45 years were included. 1114 (55·6%) participants had complete frailty measurements and 1472 (73·5%) participants had complete sarcopenia measurements. Mean age at participation was 33·1 years (SD  7·2). 1037 (51·8%) participants were male, 966 (48·2%) were female, and none were transgender. In survivors with complete frailty measurements or complete sarcopenia measurements, the percentage of pre-frailty was 20·3% (95% CI 18·0-22·7), frailty was 7·4% (6·0-9·0), and sarcopenia was 4·4% (3·5-5·6). In the models for pre-frailty, underweight (odds ratio [OR] 3·38 [95% CI 1·92-5·95]) and obesity (OR 1·67 [1·14-2·43]), cranial irradiation (OR 2·07 [1·47-2·93]), total body irradiation (OR 3·17 [1·77-5·70]), cisplatin dose of at least 600 mg/m2 (OR 3·75 [1·82-7·74]), growth hormone deficiency (OR 2·25 [1·23-4·09]), hyperthyroidism (OR 3·72 [1·63-8·47]), bone mineral density (Z score ≤-1 and >-2, OR 1·80 [95% CI 1·31-2·47]; Z score ≤-2, OR 3·37 [2·20-5·15]), and folic acid deficiency (OR 1·87 [1·31-2·68]) were considered significant. For frailty, associated factors included age at diagnosis between 10-18 years (OR 1·94 [95% CI 1·19-3·16]), underweight (OR 3·09 [1·42-6·69]), cranial irradiation (OR 2·65 [1·59-4·34]), total body irradiation (OR 3·28 [1·48-7·28]), cisplatin dose of at least 600 mg/m2 (OR 3·93 [1·45-10·67]), higher carboplatin doses (per g/m2; OR 1·15 [1·02-1·31]), cyclophosphamide equivalent dose of at least 20 g/m2 (OR 3·90 [1·65-9·24]), hyperthyroidism (OR 2·87 [1·06-7·76]), bone mineral density Z score ≤-2 (OR 2·85 [1·54-5·29]), and folic acid deficiency (OR 2·04 [1·20-3·46]). Male sex (OR 4·56 [95%CI 2·26-9·17]), lower BMI (continuous, OR 0·52 [0·45-0·60]), cranial irradiation (OR 3·87 [1·80-8·31]), total body irradiation (OR 4·52 [1·67-12·20]), hypogonadism (OR 3·96 [1·40-11·18]), growth hormone deficiency (OR 4·66 [1·44-15·15]), and vitamin B12 deficiency (OR 6·26 [2·17-1·81]) were significantly associated with sarcopenia. INTERPRETATION: Our findings show that frailty and sarcopenia occur already at a mean age of 33 years in childhood cancer survivors. Early recognition and interventions for endocrine disorders and dietary deficiencies could be important in minimising the risk of pre-frailty, frailty, and sarcopenia in this population. FUNDING: Children Cancer-free Foundation, KiKaRoW, Dutch Cancer Society, ODAS Foundation.


Assuntos
Sobreviventes de Câncer , Deficiência de Ácido Fólico , Fragilidade , Hipertireoidismo , Neoplasias , Sarcopenia , Masculino , Feminino , Humanos , Cisplatino/efeitos adversos , Sarcopenia/diagnóstico , Sarcopenia/epidemiologia , Sarcopenia/etiologia , Fragilidade/epidemiologia , Fragilidade/induzido quimicamente , Estudos Transversais , Deficiência de Ácido Fólico/induzido quimicamente , Magreza/induzido quimicamente , Neoplasias/complicações , Neoplasias/epidemiologia , Hipertireoidismo/induzido quimicamente , Hormônio do Crescimento
5.
Front Immunol ; 13: 800606, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35422806

RESUMO

Ultraviolet (UV) radiation is one of the most genotoxic, universal agents present in the environment. UVB (280-315 nm) radiation directly damages DNA, producing cyclobutane pyrimidine dimers (CPDs) and pyrimidine 6-4 pyrimidone photoproducts (6-4PPs). These photolesions interfere with essential cellular processes by blocking transcription and replication polymerases, and may induce skin inflammation, hyperplasia and cell death eventually contributing to skin aging, effects mediated mainly by keratinocytes. Additionally, these lesions may also induce mutations and thereby cause skin cancer. Photolesions are repaired by the Nucleotide Excision Repair (NER) pathway, responsible for repairing bulky DNA lesions. Both types of photolesions can also be repaired by distinct (CPD- or 6-4PP-) photolyases, enzymes that specifically repair their respective photolesion by directly splitting each dimer through a light-dependent process termed photoreactivation. However, as photolyases are absent in placental mammals, these organisms depend solely on NER for the repair of DNA UV lesions. However, the individual contribution of each UV dimer in the skin effects, as well as the role of keratinocytes has remained elusive. In this study, we show that in NER-deficient mice, the transgenic expression and photorepair of CPD-photolyase in basal keratinocytes completely inhibited UVB-induced epidermal thickness and cell proliferation. On the other hand, photorepair by 6-4PP-photolyase in keratinocytes reduced but did not abrogate these UV-induced effects. The photolyase mediated removal of either CPDs or 6-4PPs from basal keratinocytes in the skin also reduced UVB-induced apoptosis, ICAM-1 expression, and myeloperoxidase activation. These findings indicate that, in NER-deficient rodents, both types of photolesions have causal roles in UVB-induced epidermal cell proliferation, hyperplasia, cell death and inflammation. Furthermore, these findings also support the notion that basal keratinocytes, instead of other skin cells, are the major cellular mediators of these UVB-induced effects.


Assuntos
Desoxirribodipirimidina Fotoliase , Animais , DNA , Reparo do DNA , Desoxirribodipirimidina Fotoliase/genética , Desoxirribodipirimidina Fotoliase/metabolismo , Feminino , Hiperplasia , Inflamação , Queratinócitos/metabolismo , Mamíferos/genética , Camundongos , Placenta/metabolismo , Gravidez
6.
Aging Cell ; 21(4): e13562, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35246937

RESUMO

Organs age differently, causing wide heterogeneity in multimorbidity, but underlying mechanisms are largely elusive. To investigate the basis of organ-specific ageing, we utilized progeroid repair-deficient Ercc1Δ/- mouse mutants and systematically compared at the tissue, stem cell and organoid level two organs representing ageing extremes. Ercc1Δ/- intestine shows hardly any accelerated ageing. Nevertheless, we found apoptosis and reduced numbers of intestinal stem cells (ISCs), but cell loss appears compensated by over-proliferation. ISCs retain their organoid-forming capacity, but organoids perform poorly in culture, compared with WT. Conversely, liver ages dramatically, even causing early death in Ercc1-KO mice. Apoptosis, p21, polyploidization and proliferation of various (stem) cells were prominently elevated in Ercc1Δ/- liver and stem cell populations were either largely unaffected (Sox9+), or expanding (Lgr5+), but were functionally exhausted in organoid formation and development in vitro. Paradoxically, while intestine displays less ageing, repair in WT ISCs appears inferior to liver as shown by enhanced sensitivity to various DNA-damaging agents, and lower lesion removal. Our findings reveal organ-specific anti-ageing strategies. Intestine, with short lifespan limiting time for damage accumulation and repair, favours apoptosis of damaged cells relying on ISC plasticity. Liver with low renewal rates depends more on repair pathways specifically protecting the transcribed compartment of the genome to promote sustained functionality and cell preservation. As shown before, the hematopoietic system with intermediate self-renewal mainly invokes replication-linked mechanisms, apoptosis and senescence. Hence, organs employ different genome maintenance strategies, explaining heterogeneity in organ ageing and the segmental nature of DNA-repair-deficient progerias.


Assuntos
Envelhecimento , Dano ao DNA , Envelhecimento/genética , Envelhecimento/metabolismo , Animais , Dano ao DNA/genética , Reparo do DNA , Camundongos , Organoides/metabolismo , Células-Tronco/metabolismo
7.
Front Pediatr ; 10: 828615, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35155309

RESUMO

Childhood renal tumors account for around 6% of all childhood cancers and 90% of these cases are Wilms tumor. In Europe, the SIOP-RTSG approach is considered standard of care and has resulted in five-year survival rates of over 90%. Efforts to decrease toxicity are now being pursued. Short-term fasting (STF), a short but strong reduction in calorie-intake, is associated with improved fitness, enhanced coping with acute physical stress and a lower risk of age-associated diseases. STF temporarily reduces growth to boost resilience, maintenance, and defense-mechanisms, by which toxic side-effects of (oxidative) damage and inflammation are largely prevented. Renal surgery for Wilms tumor carries a risk of acute kidney injury (AKI) and pediatric patients that had an episode of AKI are at increased risk for developing chronic renal disease. STF could mitigate surgery-induced stress and could further improve outcomes. We aim to investigate the effect of STF on renal function recovery after renal tumor surgery by conducting a single-center, prospective, randomized, non-blinded, intervention study. Children diagnosed with a unilateral renal tumor and opting for curative treatment are eligible for inclusion. The main study objective is to investigate the potential decrease in occurrence of AKI due to STF. Secondary objectives include renal function recovery, child's wellbeing, physical functioning, and feasibility of and adherence to STF in children with cancer.

8.
BMJ Open ; 12(2): e053559, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35168973

RESUMO

INTRODUCTION: Hepatocellular adenoma (HCA) is an uncommon, solid and benign liver lesion, mainly occurring in women using oral contraceptives. Patients are advised to stop using oral contraceptives (OC) and, as overweight is frequently observed, dietary restrictions. Metabolic changes are assumed to play a role and it has been suggested that diet may help to reduce tumour size. A low-calorie ketogenic diet (LCKD) has been shown to induce weight loss and multiple metabolic changes, including the reduction of portal insulin concentrations, which downregulates hepatic growth hormone receptors. Weight reduction and an LCKD can potentially reduce the size of HCAs. METHODS AND ANALYSIS: We designed a matched, interventional cohort study to determine the effect of an LCKD on the regression of HCA. The study population consists of female subjects with an HCA, 18-50 years of age, body mass index>25 kg/m2, who are entering a surveillance period including cessation of OC. A historical control group will be matched. The intervention consists of an LCKD (approximately 35 g carbohydrate/1500 kcal/day) for 3 months, followed by a less strict LCKD for 3 months (approximately 60 g carbohydrate/1500 kcal/day). Main study endpoint is the diameter of the HCA after 6 months, as compared with the historic control group. Secondary endpoints include adherence, quality of life, change in physical activity, liver fat content, body weight, body composition and resting energy expenditure. ETHICS AND DISSEMINATION: The medical ethical committee has approved the study protocol, patient information files and consent procedure and other study-related documents and procedures. TRIAL REGISTRATION NUMBER: NL75014.078.20; Pre-results. https://www.trialregister.nl/trial/9092.


Assuntos
Adenoma de Células Hepáticas , Carcinoma Hepatocelular , Dieta Cetogênica , Neoplasias Hepáticas , Adolescente , Adulto , Estudos de Coortes , Feminino , Humanos , Pessoa de Meia-Idade , Qualidade de Vida , Adulto Jovem
9.
Annu Rev Cancer Biol ; 5: 161-179, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35474917

RESUMO

Dietary restriction (DR) is the most successful nutritional intervention for extending lifespan and preserving health in numerous species. Reducing food intake triggers a protective response that shifts energy resources from growth to maintenance and resilience mechanisms. This so-called survival response has been shown to particularly increase life- and health span and decrease DNA damage in DNA repair-deficient mice exhibiting accelerated aging. Accumulation of DNA damage is the main cause of aging, but also of cancer. Moreover, radiotherapies and most chemotherapies are based on damaging DNA, consistent with their ability to induce toxicity and accelerate aging. Since fasting and DR decrease DNA damage and its effects, nutritional preconditioning holds promise for improving (cancer) therapy and preventing short- and long-term side effects of anticancer treatments. This review provides an overview of the link between aging and cancer, highlights important preclinical studies applying such nutritional preconditioning, and summarizes the first clinical trials implementing nutritional preconditioning in cancer treatment.

10.
Aging Cell ; 19(3): e13072, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31737985

RESUMO

ERCC1 (excision repair cross complementing-group 1) is a mammalian endonuclease that incises the damaged strand of DNA during nucleotide excision repair and interstrand cross-link repair. Ercc1-/Δ mice, carrying one null and one hypomorphic Ercc1 allele, have been widely used to study aging due to accelerated aging phenotypes in numerous organs and their shortened lifespan. Ercc1-/Δ mice display combined features of human progeroid and cancer-prone syndromes. Although several studies report cellular senescence and apoptosis associated with the premature aging of Ercc1-/Δ mice, the link between these two processes and their physiological relevance in the phenotypes of Ercc1-/Δ mice are incompletely understood. Here, we show that ERCC1 depletion, both in cultured human fibroblasts and the skin of Ercc1-/Δ mice, initially induces cellular senescence and, importantly, increased expression of several SASP (senescence-associated secretory phenotype) factors. Cellular senescence induced by ERCC1 deficiency was dependent on activity of the p53 tumor-suppressor protein. In turn, TNFα secreted by senescent cells induced apoptosis, not only in neighboring ERCC1-deficient nonsenescent cells, but also cell autonomously in the senescent cells themselves. In addition, expression of the stem cell markers p63 and Lgr6 was significantly decreased in Ercc1-/Δ mouse skin, where the apoptotic cells are localized, compared to age-matched wild-type skin, possibly due to the apoptosis of stem cells. These data suggest that ERCC1-depleted cells become susceptible to apoptosis via TNFα secreted from neighboring senescent cells. We speculate that parts of the premature aging phenotypes and shortened health- or lifespan may be due to stem cell depletion through apoptosis promoted by senescent cells.


Assuntos
Apoptose/genética , Senescência Celular/genética , Proteínas de Ligação a DNA/deficiência , Endonucleases/deficiência , Fibroblastos/metabolismo , Pele/metabolismo , Células-Tronco/metabolismo , Animais , Células Cultivadas , Proteínas de Ligação a DNA/genética , Endonucleases/genética , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fenótipo , Transdução de Sinais/genética , Transfecção , Fator de Necrose Tumoral alfa/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
11.
Nat Commun ; 10(1): 4887, 2019 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-31653834

RESUMO

Accumulation of DNA lesions causing transcription stress is associated with natural and accelerated aging and culminates with profound metabolic alterations. Our understanding of the mechanisms governing metabolic redesign upon genomic instability, however, is highly rudimentary. Using Ercc1-defective mice and Xpg knock-out mice, we demonstrate that combined defects in transcription-coupled DNA repair (TCR) and in nucleotide excision repair (NER) directly affect bioenergetics due to declined transcription, leading to increased ATP levels. This in turn inhibits glycolysis allosterically and favors glucose rerouting through the pentose phosphate shunt, eventually enhancing production of NADPH-reducing equivalents. In NER/TCR-defective mutants, augmented NADPH is not counterbalanced by increased production of pro-oxidants and thus pentose phosphate potentiation culminates in an over-reduced redox state. Skin fibroblasts from the TCR disease Cockayne syndrome confirm results in animal models. Overall, these findings unravel a mechanism connecting DNA damage and transcriptional stress to metabolic redesign and protective antioxidant defenses.


Assuntos
Trifosfato de Adenosina/metabolismo , Antioxidantes/metabolismo , Dano ao DNA/genética , Reparo do DNA/genética , Glicólise/fisiologia , NADP/metabolismo , Via de Pentose Fosfato/fisiologia , Transcrição Gênica/genética , Regulação Alostérica , Animais , Síndrome de Cockayne/metabolismo , Proteínas de Ligação a DNA/genética , Endonucleases/genética , Fibroblastos/metabolismo , Instabilidade Genômica , Metabolômica , Camundongos , Camundongos Knockout , Proteínas Nucleares/genética , Oxirredução , Pele/citologia , Fatores de Transcrição/genética
12.
Am J Hum Genet ; 105(2): 434-440, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31374204

RESUMO

Brittle and "tiger-tail" hair is the diagnostic hallmark of trichothiodystrophy (TTD), a rare recessive disease associated with a wide spectrum of clinical features including ichthyosis, intellectual disability, decreased fertility, and short stature. As a result of premature abrogation of terminal differentiation, the hair is brittle and fragile and contains reduced cysteine content. Hypersensitivity to UV light is found in about half of individuals with TTD; all of these individuals harbor bi-allelic mutations in components of the basal transcription factor TFIIH, and these mutations lead to impaired nucleotide excision repair and basal transcription. Different genes have been found to be associated with non-photosensitive TTD (NPS-TTD); these include MPLKIP (also called TTDN1), GTF2E2 (also called TFIIEß), and RNF113A. However, a relatively large group of these individuals with NPS-TTD have remained genetically uncharacterized. Here we present the identification of an NPS-TTD-associated gene, threonyl-tRNA synthetase (TARS), found by next-generation sequencing of a group of uncharacterized individuals with NPS-TTD. One individual has compound heterozygous TARS variants, c.826A>G (p.Lys276Glu) and c.1912C>T (p.Arg638∗), whereas a second individual is homozygous for the TARS variant: c.680T>C (p.Leu227Pro). We showed that these variants have a profound effect on TARS protein stability and enzymatic function. Our results expand the spectrum of genes involved in TTD to include genes implicated in amino acid charging of tRNA, which is required for the last step in gene expression, namely protein translation. We previously proposed that some of the TTD-specific features derive from subtle transcription defects as a consequence of unstable transcription factors. We now extend the definition of TTD from a transcription syndrome to a "gene-expression" syndrome.


Assuntos
Doenças do Cabelo/patologia , Mutação , Treonina-tRNA Ligase/genética , Síndromes de Tricotiodistrofia/patologia , Alelos , Sequência de Aminoácidos , Estudos de Casos e Controles , Doenças do Cabelo/genética , Humanos , Fenótipo , Homologia de Sequência , Fator de Transcrição TFIIH/genética , Síndromes de Tricotiodistrofia/genética
13.
Genome Res ; 29(7): 1067-1077, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31221724

RESUMO

Nucleotide excision repair (NER) is one of the main DNA repair pathways that protect cells against genomic damage. Disruption of this pathway can contribute to the development of cancer and accelerate aging. Mutational characteristics of NER-deficiency may reveal important diagnostic opportunities, as tumors deficient in NER are more sensitive to certain treatments. Here, we analyzed the genome-wide somatic mutational profiles of adult stem cells (ASCs) from NER-deficient Ercc1 -/Δ mice. Our results indicate that NER-deficiency increases the base substitution load twofold in liver but not in small intestinal ASCs, which coincides with the tissue-specific aging pathology observed in these mice. Moreover, NER-deficient ASCs of both tissues show an increased contribution of Signature 8 mutations, which is a mutational pattern with unknown etiology that is recurrently observed in various cancer types. The scattered genomic distribution of the base substitutions indicates that deficiency of global-genome NER (GG-NER) underlies the observed mutational consequences. In line with this, we observe increased Signature 8 mutations in a GG-NER-deficient human organoid culture, in which XPC was deleted using CRISPR-Cas9 gene-editing. Furthermore, genomes of NER-deficient breast tumors show an increased contribution of Signature 8 mutations compared with NER-proficient tumors. Elevated levels of Signature 8 mutations could therefore contribute to a predictor of NER-deficiency based on a patient's mutational profile.


Assuntos
Reparo do DNA/genética , Mutação , Neoplasias/genética , Células-Tronco Adultas , Animais , Neoplasias da Mama/genética , Estudos de Coortes , Análise Mutacional de DNA , DNA de Neoplasias , Proteínas de Ligação a DNA/genética , Endonucleases/genética , Feminino , Humanos , Camundongos , Organoides , Técnicas de Cultura de Tecidos , Sequenciamento Completo do Genoma
14.
J Cachexia Sarcopenia Muscle ; 10(3): 662-686, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30916493

RESUMO

BACKGROUND: One of the principles underpinning our understanding of ageing is that DNA damage induces a stress response that shifts cellular resources from growth towards maintenance. A contrasting and seemingly irreconcilable view is that prompting growth of, for example, skeletal muscle confers systemic benefit. METHODS: To investigate the robustness of these axioms, we induced muscle growth in a murine progeroid model through the use of activin receptor IIB ligand trap that dampens myostatin/activin signalling. Progeric mice were then investigated for neurological and muscle function as well as cellular profiling of the muscle, kidney, liver, and bone. RESULTS: We show that muscle of Ercc1Δ/- progeroid mice undergoes severe wasting (decreases in hind limb muscle mass of 40-60% compared with normal mass), which is largely protected by attenuating myostatin/activin signalling using soluble activin receptor type IIB (sActRIIB) (increase of 30-62% compared with untreated progeric). sActRIIB-treated progeroid mice maintained muscle activity (distance travel per hour: 5.6 m in untreated mice vs. 13.7 m in treated) and increased specific force (19.3 mN/mg in untreated vs. 24.0 mN/mg in treated). sActRIIb treatment of progeroid mice also improved satellite cell function especially their ability to proliferate on their native substrate (2.5 cells per fibre in untreated progeroids vs. 5.4 in sActRIIB-treated progeroids after 72 h in culture). Besides direct protective effects on muscle, we show systemic improvements to other organs including the structure and function of the kidneys; there was a major decrease in the protein content in urine (albumin/creatinine of 4.9 sActRIIB treated vs. 15.7 in untreated), which is likely to be a result in the normalization of podocyte foot processes, which constitute the filtration apparatus (glomerular basement membrane thickness reduced from 224 to 177 nm following sActRIIB treatment). Treatment of the progeric mice with the activin ligand trap protected against the development of liver abnormalities including polyploidy (18.3% untreated vs. 8.1% treated) and osteoporosis (trabecular bone volume; 0.30 mm3 in treated progeroid mice vs. 0.14 mm3 in untreated mice, cortical bone volume; 0.30 mm3 in treated progeroid mice vs. 0.22 mm3 in untreated mice). The onset of neurological abnormalities was delayed (by ~5 weeks) and their severity reduced, overall sustaining health without affecting lifespan. CONCLUSIONS: This study questions the notion that tissue growth and maintaining tissue function during ageing are incompatible mechanisms. It highlights the need for future investigations to assess the potential of therapies based on myostatin/activin blockade to compress morbidity and promote healthy ageing.


Assuntos
Ativinas/antagonistas & inibidores , Envelhecimento/patologia , Músculo Esquelético/patologia , Transdução de Sinais/efeitos dos fármacos , Síndrome de Emaciação/prevenção & controle , Receptores de Activinas Tipo II/administração & dosagem , Receptores de Activinas Tipo II/genética , Ativinas/metabolismo , Animais , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Endonucleases/genética , Feminino , Humanos , Injeções Intraperitoneais , Masculino , Camundongos , Camundongos Transgênicos , Músculo Esquelético/efeitos dos fármacos , Miostatina/metabolismo , Proteínas Recombinantes de Fusão/administração & dosagem , Proteínas Recombinantes de Fusão/genética , Índice de Gravidade de Doença , Síndrome de Emaciação/diagnóstico , Síndrome de Emaciação/genética , Síndrome de Emaciação/patologia
15.
Nat Commun ; 9(1): 4067, 2018 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-30287812

RESUMO

Mutations in SWI/SNF genes are amongst the most common across all human cancers, but efficient therapeutic approaches that exploit vulnerabilities caused by SWI/SNF mutations are currently lacking. Here, we show that the SWI/SNF ATPases BRM/SMARCA2 and BRG1/SMARCA4 promote the expression of p62/GTF2H1, a core subunit of the transcription factor IIH (TFIIH) complex. Inactivation of either ATPase subunit downregulates GTF2H1 and therefore compromises TFIIH stability and function in transcription and nucleotide excision repair (NER). We also demonstrate that cells with permanent BRM or BRG1 depletion have the ability to restore GTF2H1 expression. As a consequence, the sensitivity of SWI/SNF-deficient cells to DNA damage induced by UV irradiation and cisplatin treatment depends on GTF2H1 levels. Together, our results expose GTF2H1 as a potential novel predictive marker of platinum drug sensitivity in SWI/SNF-deficient cancer cells.


Assuntos
DNA Helicases/metabolismo , Reparo do DNA , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Fatores de Transcrição TFII/metabolismo , Fatores de Transcrição/metabolismo , Linhagem Celular , Dano ao DNA , Humanos , Fator de Transcrição TFIIH
16.
Cell Death Dis ; 9(8): 818, 2018 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-30050065

RESUMO

The involvement of DNA damage and repair in aging processes is well established. Aging is an unequivocal risk factor for chronic neurodegenerative diseases, underscoring the relevance of investigations into the role that DNA alterations may have in the pathogenesis of these diseases. Consistently, even moderate impairment of DNA repair systems facilitates the onset of pathological features typical of PD that include derangement of the dopaminergic system, mitochondrial dysfunction, and alpha-synuclein stress. The latter establishes a connection between reduced DNA repair capacity and a cardinal feature of PD, alpha-synuclein pathology. It remains to be determined, however, whether alpha-synuclein stress activates in vivo the canonical signaling cascade associated with DNA damage, which is centered on the kinase ATM and substrates such as γH2Ax and 53BP1. Addressing these issues would shed light on age-related mechanisms impinging upon PD pathogenesis and neurodegeneration in particular. We analyzed two different synucleinopathy PD mouse models based either on intranigral delivery of AAV-expressing human alpha-synuclein, or intrastriatal injection of human alpha-synuclein pre-formed fibrils. In both cases, we detected a significant increase in γH2AX and 53BP1 foci, and in phospho-ATM immunoreactivity in dopaminergic neurons, which collectively indicate DNA damage and activation of the DNA damage response. Mechanistic experiments in cell cultures indicate that activation of the DNA damage response is caused, at least in part, by pro-oxidant species because it is prevented by exogenous or endogenous antioxidants, which also rescue mitochondrial anomalies caused by proteotoxic alpha-synuclein. These in vivo and in vitro findings reveal that the cellular stress mediated by alpha-synuclein-a pathological hallmark in PD-elicits DNA damage and activates the DNA damage response. The toxic cascade leading to DNA damage involves oxidant stress and mitochondrial dysfunction The data underscore the importance of DNA quality control for preservation of neuronal integrity and protection against neurodegenerative processes.


Assuntos
Reparo do DNA , Doença de Parkinson/patologia , Substância Negra/patologia , alfa-Sinucleína/metabolismo , Animais , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Linhagem Celular Tumoral , Dano ao DNA , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Doença de Parkinson/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Substância Negra/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , alfa-Sinucleína/genética
17.
Annu Rev Biochem ; 87: 295-322, 2018 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-29925262

RESUMO

The nuclear genome decays as organisms age. Numerous studies demonstrate that the burden of several classes of DNA lesions is greater in older mammals than in young mammals. More challenging is proving this is a cause rather than a consequence of aging. The DNA damage theory of aging, which argues that genomic instability plays a causal role in aging, has recently gained momentum. Support for this theory stems partly from progeroid syndromes in which inherited defects in DNA repair increase the burden of DNA damage leading to accelerated aging of one or more organs. Additionally, growing evidence shows that DNA damage accrual triggers cellular senescence and metabolic changes that promote a decline in tissue function and increased susceptibility to age-related diseases. Here, we examine multiple lines of evidence correlating nuclear DNA damage with aging. We then consider how, mechanistically, nuclear genotoxic stress could promote aging. We conclude that the evidence, in toto, supports a role for DNA damage as a nidus of aging.


Assuntos
Envelhecimento/genética , Núcleo Celular/genética , Instabilidade Genômica , Envelhecimento/efeitos dos fármacos , Envelhecimento/efeitos da radiação , Animais , Autofagia/genética , Senescência Celular/genética , Dano ao DNA/genética , Reparo do DNA/genética , Humanos , Longevidade/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Modelos Genéticos , Mutação , Neoplasias/genética , Neoplasias/terapia , Proteostase/genética , Regeneração/genética , Transdução de Sinais/genética
18.
Hum Mol Genet ; 26(23): 4689-4698, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28973399

RESUMO

The rare recessive developmental disorder Trichothiodystrophy (TTD) is characterized by brittle hair and nails. Patients also present a variable set of poorly explained additional clinical features, including ichthyosis, impaired intelligence, developmental delay and anemia. About half of TTD patients are photosensitive due to inherited defects in the DNA repair and transcription factor II H (TFIIH). The pathophysiological contributions of unrepaired DNA lesions and impaired transcription have not been dissected yet. Here, we functionally characterize the consequence of a homozygous missense mutation in the general transcription factor II E, subunit 2 (GTF2E2/TFIIEß) of two unrelated non-photosensitive TTD (NPS-TTD) families. We demonstrate that mutant TFIIEß strongly reduces the total amount of the entire TFIIE complex, with a remarkable temperature-sensitive transcription defect, which strikingly correlates with the phenotypic aggravation of key clinical symptoms after episodes of high fever. We performed induced pluripotent stem (iPS) cell reprogramming of patient fibroblasts followed by in vitro erythroid differentiation to translate the intriguing molecular defect to phenotypic expression in relevant tissue, to disclose the molecular basis for some specific TTD features. We observed a clear hematopoietic defect during late-stage differentiation associated with hemoglobin subunit imbalance. These new findings of a DNA repair-independent transcription defect and tissue-specific malfunctioning provide novel mechanistic insight into the etiology of TTD.


Assuntos
Fatores de Transcrição TFII/genética , Síndromes de Tricotiodistrofia/genética , Diferenciação Celular/genética , Reprogramação Celular/genética , DNA Helicases/genética , Reparo do DNA , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/patologia , Masculino , Mutação , Mutação de Sentido Incorreto , Especificidade de Órgãos , Linhagem , Fatores de Transcrição TFII/metabolismo , Transcrição Gênica , Síndromes de Tricotiodistrofia/metabolismo , Síndromes de Tricotiodistrofia/patologia
19.
Nat Commun ; 8: 15691, 2017 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-28608850

RESUMO

The incidence of non-alcoholic fatty liver disease (NAFLD) increases with age. Cellular senescence refers to a state of irreversible cell-cycle arrest combined with the secretion of proinflammatory cytokines and mitochondrial dysfunction. Senescent cells contribute to age-related tissue degeneration. Here we show that the accumulation of senescent cells promotes hepatic fat accumulation and steatosis. We report a close correlation between hepatic fat accumulation and markers of hepatocyte senescence. The elimination of senescent cells by suicide gene-meditated ablation of p16Ink4a-expressing senescent cells in INK-ATTAC mice or by treatment with a combination of the senolytic drugs dasatinib and quercetin (D+Q) reduces overall hepatic steatosis. Conversely, inducing hepatocyte senescence promotes fat accumulation in vitro and in vivo. Mechanistically, we show that mitochondria in senescent cells lose the ability to metabolize fatty acids efficiently. Our study demonstrates that cellular senescence drives hepatic steatosis and elimination of senescent cells may be a novel therapeutic strategy to reduce steatosis.


Assuntos
Senescência Celular/efeitos dos fármacos , Dasatinibe/química , Fígado Gorduroso/patologia , Inflamação , Quercetina/química , Animais , Apoptose/efeitos dos fármacos , Células Cultivadas , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Fígado Gorduroso/metabolismo , Fibroblastos/metabolismo , Hepatócitos/citologia , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia
20.
Cell ; 169(1): 132-147.e16, 2017 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-28340339

RESUMO

The accumulation of irreparable cellular damage restricts healthspan after acute stress or natural aging. Senescent cells are thought to impair tissue function, and their genetic clearance can delay features of aging. Identifying how senescent cells avoid apoptosis allows for the prospective design of anti-senescence compounds to address whether homeostasis can also be restored. Here, we identify FOXO4 as a pivot in senescent cell viability. We designed a FOXO4 peptide that perturbs the FOXO4 interaction with p53. In senescent cells, this selectively causes p53 nuclear exclusion and cell-intrinsic apoptosis. Under conditions where it was well tolerated in vivo, this FOXO4 peptide neutralized doxorubicin-induced chemotoxicity. Moreover, it restored fitness, fur density, and renal function in both fast aging XpdTTD/TTD and naturally aged mice. Thus, therapeutic targeting of senescent cells is feasible under conditions where loss of health has already occurred, and in doing so tissue homeostasis can effectively be restored.


Assuntos
Envelhecimento/patologia , Antibióticos Antineoplásicos/efeitos adversos , Peptídeos Penetradores de Células/farmacologia , Doxorrubicina/efeitos adversos , Envelhecimento/efeitos dos fármacos , Animais , Antibióticos Antineoplásicos/administração & dosagem , Antibióticos Antineoplásicos/farmacologia , Apoptose , Proteínas de Ciclo Celular , Linhagem Celular , Sobrevivência Celular , Senescência Celular/efeitos dos fármacos , Doxorrubicina/administração & dosagem , Doxorrubicina/farmacologia , Feminino , Fibroblastos/citologia , Fatores de Transcrição Forkhead/química , Fatores de Transcrição Forkhead/metabolismo , Humanos , Corpos de Inclusão/efeitos dos fármacos , Corpos de Inclusão/metabolismo , Corpos de Inclusão/patologia , Rim/efeitos dos fármacos , Rim/fisiologia , Fígado/efeitos dos fármacos , Fígado/fisiologia , Masculino , Camundongos , Síndromes de Tricotiodistrofia/tratamento farmacológico , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA