RESUMO
Background: Transplant-associated thrombotic microangiopathy (TA-TMA) is a critical complication of hematopoietic stem cell transplantation. Awareness about TA-TMA has increased in recent years, resulting in the implementation of TA-TMA screening in most centers. Methods: Retrospective analysis of children who underwent autologous or allogeneic hematopoietic stem cell transplantation at our center between January 2018 and December 2022 was conducted to evaluate the incidence, clinical features, and outcomes of TA-TMA following the administration of different therapeutic options. Results: A total of 45 patients comprised the study cohort, of whom 10 developed TA-TMA with a cumulative incidence of 22% by 100 days after transplantation. Patients with and without TA-TMA in our cohort displayed an overall survival of 80% and 88%, respectively (p = 0.48), and a non-relapse mortality of 0% and 5.7%, respectively (p = 0.12), at 1 year after transplantation. Risk factors for TA-TMA development included allogeneic transplantation and total body irradiation-based conditioning regime. Among the 10 patients with TA-TMA, 7 did not meet the high-risk criteria described by Jodele and colleagues. Of these seven patients, two responded to calcineurin-inhibitor withdrawal without further therapy and five developed multiorgan dysfunction syndrome and were treated with anti-inflammatory steroids (prednisone), and all responded to therapy. The three patients with high-risk TA-TMA were treated with complement blockade or prednisone, and all responded to therapy. Conclusion: TA-TMA is a multifactorial complication with high morbidity rates. Patients with high-risk TA-TMA may benefit from complement blockade using eculizumab. No consensus has been reached regarding therapy for patients who do not meet high-risk criteria. Our analysis showed that these patients may respond to anti-inflammatory treatment with prednisone.
RESUMO
RNA-binding proteins (RBPs) form a large and diverse class of factors, many members of which are overexpressed in hematologic malignancies. RBPs participate in various processes of messenger RNA (mRNA) metabolism and prevent harmful DNA:RNA hybrids or R-loops. Here, we report that PIWIL4, a germ stem cell-associated RBP belonging to the RNase H-like superfamily, is overexpressed in patients with acute myeloid leukemia (AML) and is essential for leukemic stem cell function and AML growth, but dispensable for healthy human hematopoietic stem cells. In AML cells, PIWIL4 binds to a small number of known piwi-interacting RNA. Instead, it largely interacts with mRNA annotated to protein-coding genic regions and enhancers that are enriched for genes associated with cancer and human myeloid progenitor gene signatures. PIWIL4 depletion in AML cells downregulates the human myeloid progenitor signature and leukemia stem cell (LSC)-associated genes and upregulates DNA damage signaling. We demonstrate that PIWIL4 is an R-loop resolving enzyme that prevents R-loop accumulation on a subset of AML and LSC-associated genes and maintains their expression. It also prevents DNA damage, replication stress, and activation of the ATR pathway in AML cells. PIWIL4 depletion potentiates sensitivity to pharmacological inhibition of the ATR pathway and creates a pharmacologically actionable dependency in AML cells.
Assuntos
Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/patologia , Células-Tronco Hematopoéticas/metabolismo , Proliferação de Células , Genômica , RNA Mensageiro/metabolismo , Células-Tronco Neoplásicas/patologiaRESUMO
Persistence of malignant clones is a major determinant of adverse outcome in patients with hematologic malignancies. Despite the fact that the majority of patients with acute myeloid leukemia (AML) achieve complete remission after chemotherapy, a large proportion of them relapse as a result of residual malignant cells. These persistent clones have a competitive advantage and can re-establish disease. Therefore, targeting strategies that specifically diminish cell competition of malignant cells while leaving normal cells unaffected are clearly warranted. Recently, our group identified YBX1 as a mediator of disease persistence in JAK2-mutated myeloproliferative neoplasms. The role of YBX1 in AML, however, remained so far elusive. Here, inactivation of YBX1 confirms its role as an essential driver of leukemia development and maintenance. We identify its ability to amplify the translation of oncogenic transcripts, including MYC, by recruitment to polysomal chains. Genetic inactivation of YBX1 disrupts this regulatory circuit and displaces oncogenic drivers from polysomes, with subsequent depletion of protein levels. As a consequence, leukemia cells show reduced proliferation and are out-competed in vitro and in vivo, while normal cells remain largely unaffected. Collectively, these data establish YBX1 as a specific dependency and therapeutic target in AML that is essential for oncogenic protein expression.
Assuntos
Biomarcadores Tumorais/metabolismo , Competição entre as Células , Janus Quinase 2/metabolismo , Leucemia Mieloide Aguda/patologia , Mutação , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteína 1 de Ligação a Y-Box/metabolismo , Animais , Apoptose , Biomarcadores Tumorais/genética , Proliferação de Células , Humanos , Janus Quinase 2/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Camundongos , Prognóstico , Proteínas Proto-Oncogênicas c-myc/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto , Proteína 1 de Ligação a Y-Box/genéticaRESUMO
B cells have the unique property to somatically alter their immunoglobulin (IG) genes by V(D)J recombination, somatic hypermutation (SHM) and class-switch recombination (CSR). Aberrant targeting of these mechanisms is implicated in lymphomagenesis, but the mutational processes are poorly understood. By performing whole genome and transcriptome sequencing of 181 germinal center derived B-cell lymphomas (gcBCL) we identified distinct mutational signatures linked to SHM and CSR. We show that not only SHM, but presumably also CSR causes off-target mutations in non-IG genes. Kataegis clusters with high mutational density mainly affected early replicating regions and were enriched for SHM- and CSR-mediated off-target mutations. Moreover, they often co-occurred in loci physically interacting in the nucleus, suggesting that mutation hotspots promote increased mutation targeting of spatially co-localized loci (termed hypermutation by proxy). Only around 1% of somatic small variants were in protein coding sequences, but in about half of the driver genes, a contribution of B-cell specific mutational processes to their mutations was found. The B-cell-specific mutational processes contribute to both lymphoma initiation and intratumoral heterogeneity. Overall, we demonstrate that mutational processes involved in the development of gcBCL are more complex than previously appreciated, and that B cell-specific mutational processes contribute via diverse mechanisms to lymphomagenesis.
Assuntos
Genoma/genética , Centro Germinativo/metabolismo , Linfoma de Células B/genética , Mutação/genética , Adulto , Linfócitos B/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Genes de Imunoglobulinas/genética , Células HeLa , Células Hep G2 , Células Endoteliais da Veia Umbilical Humana , Humanos , Switching de Imunoglobulina/genética , Células K562 , Células MCF-7 , Hipermutação Somática de Imunoglobulina/genética , Recombinação V(D)J/genéticaRESUMO
Medulloblastomas arise from undifferentiated precursor cells in the cerebellum and account for about 20% of all solid brain tumors during childhood; standard therapies include radiation and chemotherapy, which oftentimes come with severe impairment of the cognitive development of the young patients. Here, we show that the posttranscriptional regulator Y-box binding protein 1 (YBX1), a DNA- and RNA-binding protein, acts as an oncogene in medulloblastomas by regulating cellular survival and apoptosis. We observed different cellular responses upon YBX1 knockdown in several medulloblastoma cell lines, with significantly altered transcription and subsequent apoptosis rates. Mechanistically, PAR-CLIP for YBX1 and integration with RNA-Seq data uncovered direct posttranscriptional control of the heterochromatin-associated gene CBX5; upon YBX1 knockdown and subsequent CBX5 mRNA instability, heterochromatin-regulated genes involved in inflammatory response, apoptosis and death receptor signaling were de-repressed. Thus, YBX1 acts as an oncogene in medulloblastoma through indirect transcriptional regulation of inflammatory genes regulating apoptosis and represents a promising novel therapeutic target in this tumor entity.
Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Regulação Neoplásica da Expressão Gênica , Heterocromatina/genética , Inflamação/patologia , Meduloblastoma/patologia , RNA Mensageiro/metabolismo , Proteína 1 de Ligação a Y-Box/metabolismo , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Proliferação de Células , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/imunologia , Neoplasias Cerebelares/metabolismo , Neoplasias Cerebelares/patologia , Homólogo 5 da Proteína Cromobox , Proteínas Cromossômicas não Histona/genética , Humanos , Inflamação/genética , Inflamação/imunologia , Inflamação/metabolismo , Meduloblastoma/genética , Meduloblastoma/imunologia , Meduloblastoma/metabolismo , RNA Mensageiro/genética , Células Tumorais Cultivadas , Proteína 1 de Ligação a Y-Box/genéticaRESUMO
Acute leukemias are genetic diseases caused by translocations or mutations, which dysregulate hematopoiesis towards malignant transformation. However, the molecular mode of action is highly versatile and ranges from direct transcriptional to post-transcriptional control, which includes RNA-binding proteins (RBPs) as crucial regulators of cell fate. RBPs coordinate RNA dynamics, including subcellular localization, translational efficiency and metabolism, by binding to their target messenger RNAs (mRNAs), thereby controlling the expression of the encoded proteins. In view of the growing interest in these regulators, this review summarizes recent research regarding the most influential RBPs relevant in acute leukemias in particular. The reported RBPs, either dysregulated or as components of fusion proteins, are described with respect to their functional domains, the pathways they affect, and clinical aspects associated with their dysregulation or altered functions.
Assuntos
Regulação Leucêmica da Expressão Gênica , Leucemia/genética , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Doença Aguda , Animais , Humanos , Leucemia/metabolismo , Conformação de Ácido Nucleico , Ligação Proteica , Domínios Proteicos , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismoRESUMO
OBJECTIVE: The Fragile X mental retardation (FMR) syndrome is a frequently inherited intellectual disability caused by decreased or absent expression of the FMR protein (FMRP). Lack of FMRP is associated with neuronal degradation and cognitive dysfunction but its role outside the central nervous system is insufficiently studied. Here, we identify a role of FMRP in liver disease. DESIGN: Mice lacking Fmr1 gene expression were used to study the role of FMRP during tumour necrosis factor (TNF)-induced liver damage in disease model systems. Liver damage and mechanistic studies were performed using real-time PCR, Western Blot, staining of tissue sections and clinical chemistry. RESULTS: Fmr1null mice exhibited increased liver damage during virus-mediated hepatitis following infection with the lymphocytic choriomeningitis virus. Exposure to TNF resulted in severe liver damage due to increased hepatocyte cell death. Consistently, we found increased caspase-8 and caspase-3 activation following TNF stimulation. Furthermore, we demonstrate FMRP to be critically important for regulating key molecules in TNF receptor 1 (TNFR1)-dependent apoptosis and necroptosis including CYLD, c-FLIPS and JNK, which contribute to prolonged RIPK1 expression. Accordingly, the RIPK1 inhibitor Necrostatin-1s could reduce liver cell death and alleviate liver damage in Fmr1null mice following TNF exposure. Consistently, FMRP-deficient mice developed increased pathology during acute cholestasis following bile duct ligation, which coincided with increased hepatic expression of RIPK1, RIPK3 and phosphorylation of MLKL. CONCLUSIONS: We show that FMRP plays a central role in the inhibition of TNF-mediated cell death during infection and liver disease.
Assuntos
Proteína do X Frágil da Deficiência Intelectual/fisiologia , Hepatite Viral Animal/imunologia , Fator de Necrose Tumoral alfa/imunologia , Animais , Infecções por Arenaviridae/imunologia , Infecções por Arenaviridae/patologia , Linfócitos T CD8-Positivos/imunologia , Morte Celular/efeitos dos fármacos , Morte Celular/imunologia , Morte Celular/fisiologia , Células Cultivadas , Colestase/imunologia , Colestase/metabolismo , Colestase/patologia , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Hepatite Viral Animal/patologia , Hepatite Viral Animal/prevenção & controle , Hepatócitos/patologia , Imidazóis/farmacologia , Imidazóis/uso terapêutico , Indóis/farmacologia , Indóis/uso terapêutico , Vírus da Coriomeningite Linfocítica , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Serina-Treonina Quinases de Interação com Receptores/antagonistas & inibidores , Proteína Serina-Treonina Quinases de Interação com Receptores/fisiologiaRESUMO
Life-limiting conditions in children in specialized pediatric palliative care (PPC) are manifold. The "Together for Short Lives" (TfSL) association established four disease categories, which represent the most common illness trajectories. Better understanding the palliative care needs and symptoms of children within these TfSL groups will result in improved anticipation of clinical problems and tailored care. During this retrospective single-center cohort study, 198 children, adolescents, and young adults (CAYAs) were in PPC. Mean age at referral was 8.7 years (range 0.0-25.0), mean duration of care 355 days (range 1-2754). One hundred six (53.5%) CAYAs died during the study period. Sixty-five (32.8%) CAYAs were assigned to TfSL-1, 13 (6.6%) to TfSL-2, 49 (24.7%) to TfSL-3, and 71 (35.9%) to TfSL-4. Home visits were conducted on average every 9.6 days in TfSL-1, 18.9 days in TfSL-2, 31.7 days in TfSL-3, and 31.8 days in TfSL-4 (p value < 0.01).Conclusions: Intensity of palliative care significantly differed between the TfSL groups. Neurological and gastrointestinal symptoms were most prominent across all TfSL groups. Symptom cluster analysis showed distinct clusters in TfSL-1 (cluster 1, fatigue/lack of appetite/nausea/somnolence; cluster 2, dyspnea/fear/myoclonus/seizures/spasticity) and TfSL-3/4 (cluster 1, spasticity; cluster 2, all other symptoms).What is Known:⢠The four TfSL (together for short lives) groups represent the four most common illness trajectories of pediatric palliative care patients.⢠Better understanding the palliative care needs and symptoms of children within these four TfSL groups will result in improved anticipation of clinical problems and tailored care.What is New:⢠In our study, TfSL-1 represented the largest individual group of patients, also requiring the most intensive care (defined by the number of visits per days of care).⢠Symptom cluster analysis revealed distinct symptom clusters in TfSL-1 and TfSL-3/4, which can be used to anticipate clinically common challenges in these patients.
Assuntos
Cuidados Paliativos , Assistência Terminal , Adolescente , Atitude Frente a Morte , Criança , Pré-Escolar , Feminino , Alemanha , Humanos , Lactente , Recém-Nascido , Masculino , Estudos Retrospectivos , Síndrome , Adulto JovemRESUMO
Survival of patients with pediatric acute lymphoblastic leukemia (ALL) after allogeneic hematopoietic stem cell transplantation (allo-SCT) is mainly compromised by leukemia relapse, carrying dismal prognosis. As novel individualized therapeutic approaches are urgently needed, we performed whole-exome sequencing of leukemic blasts of 10 children with post-allo-SCT relapses with the aim of thoroughly characterizing the mutational landscape and identifying druggable mutations. We found that post-allo-SCT ALL relapses display highly diverse and mostly patient-individual genetic lesions. Moreover, mutational cluster analysis showed substantial clonal dynamics during leukemia progression from initial diagnosis to relapse after allo-SCT. Only very few alterations stayed constant over time. This dynamic clonality was exemplified by the detection of thiopurine resistance-mediating mutations in the nucleotidase NT5C2 in 3 patients' first relapses, which disappeared in the post-allo-SCT relapses on relief of selective pressure of maintenance chemotherapy. Moreover, we identified TP53 mutations in 4 of 10 patients after allo-SCT, reflecting acquired chemoresistance associated with selective pressure of prior antineoplastic treatment. Finally, in 9 of 10 children's post-allo-SCT relapse, we found alterations in genes for which targeted therapies with novel agents are readily available. We could show efficient targeting of leukemic blasts by APR-246 in 2 patients carrying TP53 mutations. Our findings shed light on the genetic basis of post-allo-SCT relapse and may pave the way for unraveling novel therapeutic strategies in this challenging situation.
Assuntos
Biomarcadores Tumorais , Evolução Clonal/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/etiologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Seleção Genética , Criança , Pré-Escolar , Biologia Computacional/métodos , Reparo do DNA , Feminino , Transplante de Células-Tronco Hematopoéticas/métodos , Humanos , Imunofenotipagem , Lactente , Masculino , Mutação , Polimorfismo de Nucleotídeo Único , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Recidiva , Transplante Homólogo , Proteína Supressora de Tumor p53/genéticaRESUMO
Over the past decades, striking progress has been made in the treatment of pediatric leukemia, approaching 90% overall survival in children with acute lymphoblastic leukemia (ALL) and 75% in children with acute myeloid leukemia (AML). This has mainly been achieved through multiagent chemotherapy including CNS prophylaxis and risk-adapted therapy within collaborative clinical trials. However, prognosis in children with refractory or relapsed leukemia remains poor and has not significantly improved despite great efforts. Hence, more effective and less toxic therapies are urgently needed. Our understanding of disease biology, molecular drivers, drug resistance and, thus, the possibility to identify children at high-risk for treatment failure has significantly improved in recent years. Moreover, several new drugs targeting key molecular pathways involved in leukemia development, cell growth, and proliferation have been developed and approved. These striking achievements are linked to the great hope to further improve survival in children with refractory and relapsed leukemia. This review gives an overview on current molecularly targeted therapies in children with leukemia, including kinase, and proteasome inhibitors, epigenetic and enzyme targeting, as well as apoptosis regulators among others.
RESUMO
PURPOSE: Biallelic pathogenic variants in the mismatch repair (MMR) genes cause a recessive childhood cancer predisposition syndrome known as constitutional mismatch repair deficiency (CMMRD). Family members with a heterozygous MMR variant have Lynch syndrome. We aimed at estimating cancer risk in these heterozygous carriers as a novel approach to avoid complicated statistical methods to correct for ascertainment bias. METHODS: Cumulative colorectal cancer incidence was estimated in a cohort of PMS2- and MSH6-associated families, ascertained by the CMMRD phenotype of the index, by using mutation probabilities based on kinship coefficients as analytical weights in a proportional hazard regression on the cause-specific hazards. Confidence intervals (CIs) were obtained by bootstrapping at the family level. RESULTS: The estimated cumulative colorectal cancer risk at age 70 years for heterozygous PMS2 variant carriers was 8.7% (95% CI 4.3-12.7%) for both sexes combined, and 9.9% (95% CI 4.9-15.3%) for men and 5.9% (95% CI 1.6-11.1%) for women separately. For heterozygous MSH6 variant carriers these estimates are 11.8% (95% CI 4.5-22.7%) for both sexes combined, 10.0% (95% CI 1.83-24.5%) for men and 11.7% (95% CI 2.10-26.5%) for women. CONCLUSION: Our findings are consistent with previous reports that used more complex statistical methods to correct for ascertainment bias. These results underline the need for MMR gene-specific surveillance protocols for Lynch syndrome.
Assuntos
Neoplasias Colorretais Hereditárias sem Polipose/complicações , Neoplasias Colorretais/etiologia , Medição de Risco/métodos , Adulto , Idoso , Estudos de Coortes , Neoplasias Colorretais Hereditárias sem Polipose/genética , Neoplasias Colorretais Hereditárias sem Polipose/metabolismo , Reparo de Erro de Pareamento de DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Feminino , Predisposição Genética para Doença/genética , Mutação em Linhagem Germinativa , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Endonuclease PMS2 de Reparo de Erro de Pareamento/genética , Endonuclease PMS2 de Reparo de Erro de Pareamento/metabolismo , Mutação , Fatores de RiscoRESUMO
Medulloblastoma is the most frequent malignant brain tumor in childhood. This highly malignant neoplasm occurs usually before 10 years of age and more frequently in boys. The 5-year event-free survival rate for high-risk medulloblastoma is low at 62% despite a multimodal therapy including surgical resection, radiation therapy and chemotherapy. We report the case of a boy, who was born to consanguineous parents. Prominently, he had multiple café-au-lait spots. At the age of 3 years he was diagnosed with a high-risk metastatic medulloblastoma. The patient died only 11 months after diagnosis of a fulminant relapse presenting as meningeal and spinal dissemination. Whole-exome sequencing of germline DNA was employed to detect the underlying mutation for this putative cancer syndrome presenting with the combination of medulloblastoma and skin alterations. After screening all possible homozygous gene SNVs, we identified a mutation of SON, an essential protein in cell cycle regulation and cell proliferation, as the most likely genetic cause.
Assuntos
Manchas Café com Leite/genética , Neoplasias Cerebelares/genética , Proteínas de Ligação a DNA/genética , Meduloblastoma/genética , Antígenos de Histocompatibilidade Menor/genética , Pré-Escolar , Consanguinidade , Evolução Fatal , Humanos , Masculino , Linhagem , Mutação Puntual , SíndromeRESUMO
The homeobox gene HLXB9 encodes for the transcription factor HB9, which is essential for pancreatic as well as motor neuronal development. Beside its physiological expression pattern, aberrant HB9 expression has been observed in several neoplasias. Especially in infant translocation t(7;12) acute myeloid leukemia, aberrant HB9 expression is the only known molecular hallmark and is assumed to be a key factor in leukemic transformation. However, so far, only poor functional data exist addressing the oncogenic potential of HB9 or its influence on hematopoiesis. We investigated the influence of HB9 on cell proliferation and cell cycle in vitro, as well as on hematopoietic stem cell differentiation in vivo using murine and human model systems. In vitro, HB9 expression led to premature senescence in human HT1080 and murine NIH3T3 cells, providing for the first time evidence for an oncogenic potential of HB9. Onset of senescence was characterized by induction of the p53-p21 tumor suppressor network, resulting in growth arrest, accompanied by morphological transformation and expression of senescence-associated ß-galactosidase. In vivo, HB9-transduced primary murine hematopoietic stem and progenitor cells underwent a profound differentiation arrest and accumulated at the megakaryocyte/erythrocyte progenitor stage. In line, gene expression analyses revealed de novo expression of erythropoiesis-related genes in human CD34+hematopoietic stem and progenitor cells upon HB9 expression. In summary, the novel findings of HB9-dependent premature senescence and myeloid-biased perturbed hematopoietic differentiation, for the first time shed light on the oncogenic properties of HB9 in translocation t(7;12) acute myeloid leukemia.
Assuntos
Ciclo Celular , Diferenciação Celular , Senescência Celular , Regulação Leucêmica da Expressão Gênica , Células-Tronco Hematopoéticas/metabolismo , Proteínas de Homeodomínio/biossíntese , Leucemia Mieloide Aguda/metabolismo , Proteínas de Neoplasias/biossíntese , Fatores de Transcrição/biossíntese , Animais , Eritropoese/genética , Células-Tronco Hematopoéticas/patologia , Proteínas de Homeodomínio/genética , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Masculino , Camundongos , Células NIH 3T3 , Proteínas de Neoplasias/genética , Fatores de Transcrição/genética , Translocação GenéticaRESUMO
The RNA-binding protein Musashi 2 (MSI2) has emerged as an important regulator in cancer initiation, progression, and drug resistance. Translocations and deregulation of the MSI2 gene are diagnostic of certain cancers, including chronic myeloid leukemia (CML) with translocation t(7;17), acute myeloid leukemia (AML) with translocation t(10;17), and some cases of B-precursor acute lymphoblastic leukemia (pB-ALL). To better understand the function of MSI2 in leukemia, the mRNA targets that are bound and regulated by MSI2 and their MSI2-binding motifs need to be identified. To this end, using photoactivatable ribonucleoside cross-linking and immunoprecipitation (PAR-CLIP) and the multiple EM for motif elicitation (MEME) analysis tool, here we identified MSI2's mRNA targets and the consensus RNA-recognition element (RRE) motif recognized by MSI2 (UUAG). Of note, MSI2 knockdown altered the expression of several genes with roles in eukaryotic initiation factor 2 (eIF2), hepatocyte growth factor (HGF), and epidermal growth factor (EGF) signaling pathways. We also show that MSI2 regulates classic interleukin-6 (IL-6) signaling by promoting the degradation of the mRNA of IL-6 signal transducer (IL6ST or GP130), which, in turn, affected the phosphorylation statuses of signal transducer and activator of transcription 3 (STAT3) and the mitogen-activated protein kinase ERK. In summary, we have identified multiple MSI2-regulated mRNAs and provided evidence that MSI2 controls IL6ST activity that control oncogenic signaling networks. Our findings may help inform strategies for unraveling the role of MSI2 in leukemia to pave the way for the development of targeted therapies.
Assuntos
Receptor gp130 de Citocina/genética , Interleucina-6/genética , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Transcriptoma , Sequência de Bases , Sítios de Ligação , Receptor gp130 de Citocina/metabolismo , Fator de Crescimento Epidérmico/genética , Fator de Crescimento Epidérmico/metabolismo , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Células HEK293 , Fator de Crescimento de Hepatócito/genética , Fator de Crescimento de Hepatócito/metabolismo , Humanos , Imunoprecipitação , Interleucina-6/metabolismo , Leucemia/genética , Leucemia/metabolismo , Leucemia/patologia , Luz , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Modelos Biológicos , Ligação Proteica , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Transdução de SinaisRESUMO
BACKGROUND: Our objective was to evaluate children with metabolic diseases in paediatric palliative home care (PPC) and the process of decision-making. This study was conducted as single-centre retrospective cohort study of patients in the care of a large specialized PPC team. RESULTS: Between 01/2013 and 09/2016, 198 children, adolescents and young adults were in the care of our PPC team. Twenty-nine (14.6%) of these patients had metabolic conditions. Median age at referral was 2.6 years (0-24), median duration of care 352 days (3-2248) and median number of home visits 13 (1-80). Most patients are still alive (16; 55.2%). Median number of drugs administered was 5 (range 0-12), antiepileptics were given most frequently. Symptom burden was high in all children with metabolic disorders at referral and remained high throughout care. Predominant symptoms were gastrointestinal, respiratory and neurologic symptoms. Children with metabolic conditions, who were referred to PPC younger than 1 year of age had a shorter period of care and died earlier compared to those children, who were referred to PPC later in their lives (older than 10 years of age). Eleven (37.9%) of the children initially had no resuscitation restrictions and 7 (53.8%) of those who died, did so on ICU. CONCLUSIONS: About 15% of children with life-limiting conditions in PPC present with metabolic diseases. Symptom burden is high with neurologic, respiratory and gastrointestinal symptoms being the most frequent and most of those being difficult to treat. In these children, particular attention needs to be addressed to advance care planning.
Assuntos
Erros Inatos do Metabolismo , Cuidados Paliativos/métodos , Adolescente , Adulto , Criança , Pré-Escolar , Tomada de Decisões , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Doenças Metabólicas , Doenças do Sistema Nervoso , Adulto JovemRESUMO
Constitutional mismatch repair deficiency (CMMRD) is an autosomal recessively inherited childhood cancer susceptibility syndrome caused by biallelic germline mutations in one of the mismatch repair (MMR) genes. The spectrum of CMMRD-associated tumours is very broad and many CMMRD patients additionally display signposting non-neoplastic features, most frequently café-au-lait macules and other pigmentation alterations. We report on a 13-month-old girl suspected of having CMMRD due to a desmoplastic medulloblastoma and a striking skin pigmentation that included multiple café-au-lait macules, hypopigmented areas and Mongolian spots. Whole-exome sequencing revealed homozygosity for MSH2 variant p.(Leu92Val) and MSH6 variant p.(Val809del), both variants of uncertain significance (VUS). Immunohistochemical analysis of the tumour tissue showed expression of all four MMR proteins and gMSI testing was negative. However, functional assays demonstrated that the cells of the patient displayed methylation tolerance and ex vivo microsatellite instability, which unequivocally confirmed the diagnosis of CMMRD. Taken together, the results render the MSH2 variant unlikely to be responsible for the phenotype, while they are compatible with MSH6-associated CMMRD. This case illustrates the diagnostic strategy of confirming CMMRD syndrome in patients with VUS.
Assuntos
Neoplasias Cerebelares/genética , Proteínas de Ligação a DNA/genética , Testes Genéticos/métodos , Meduloblastoma/genética , Proteína 2 Homóloga a MutS/genética , Fenótipo , Linhagem Celular Tumoral , Células Cultivadas , Neoplasias Cerebelares/patologia , Proteínas de Ligação a DNA/metabolismo , Diagnóstico Diferencial , Feminino , Homozigoto , Humanos , Lactente , Meduloblastoma/patologia , Proteína 2 Homóloga a MutS/metabolismoRESUMO
Relapse remains the major cause of treatment failure in children with high-risk acute lymphoblastic leukaemia (ALL) undergoing allogeneic haematopoietic stem-cell transplantation (allo-SCT). Prognosis is considered dismal but data on risk factors and outcome are lacking from prospective studies. We analysed 242 children with recurrence of ALL after first allo-SCT enrolled in the Berlin-Frankfurt-Munster (BFM) ALL-SCT-BFM 2003 and ALL-SCT-BFM international 2007 studies. Median time from allo-SCT to relapse was 7·7 months; median follow-up from relapse after allo-SCT until last follow-up was 3·4 years. The 3-year event-free survival (EFS) was 15% and overall survival (OS) was 20%. The main cause of death was disease progression or relapse (86·5%). The majority of children (48%) received salvage therapy without second allo-SCT, 26% of the children underwent a second allo-SCT and 25% received palliative treatment only. In multivariate analyses, age, site of relapse, time to relapse and type of salvage therapy were identified as significant prognostic factors for OS and EFS, whereas factors associated with first SCT were not statistically significant. Combined approaches incorporating novel immunotherapeutic treatment options and second allo-SCT hold promise to improve outcome in children with post allo-SCT relapse.
Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/mortalidade , Adolescente , Criança , Pré-Escolar , Terapia Combinada , Feminino , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Transplante de Células-Tronco Hematopoéticas/métodos , Humanos , Lactente , Masculino , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Prognóstico , Modelos de Riscos Proporcionais , Recidiva , Indução de Remissão , Retratamento , Terapia de Salvação , Análise de Sobrevida , Fatores de Tempo , Transplante Homólogo , Resultado do Tratamento , Adulto JovemRESUMO
Innate immune activation is essential to mount an effective antiviral response and to prime adaptive immunity. Although a crucial role of CD169+ cells during vesicular stomatitis virus (VSV) infections is increasingly recognized, factors regulating CD169+ cells during viral infections remain unclear. Here, we show that tumor necrosis factor is produced by CD11b+ Ly6C+ Ly6G+ cells following infection with VSV. The absence of TNF or TNF receptor 1 (TNFR1) resulted in reduced numbers of CD169+ cells and in reduced type I interferon (IFN-I) production during VSV infection, with a severe disease outcome. Specifically, TNF triggered RelA translocation into the nuclei of CD169+ cells; this translocation was inhibited when the paracaspase MALT-1 was absent. Consequently, MALT1 deficiency resulted in reduced VSV replication, defective innate immune activation, and development of severe disease. These findings indicate that TNF mediates the maintenance of CD169+ cells and innate and adaptive immune activation during VSV infection.IMPORTANCE Over the last decade, strategically placed CD169+ metallophilic macrophages in the marginal zone of the murine spleen and lymph nodes (LN) have been shown to play a very important role in host defense against viral pathogens. CD169+ macrophages have been shown to activate innate and adaptive immunity via "enforced virus replication," a controlled amplification of virus particles. However, the factors regulating the CD169+ macrophages remain to be studied. In this paper, we show that after vesicular stomatitis virus infection, phagocytes produce tumor necrosis factor (TNF), which signals via TNFR1, and promote enforced virus replication in CD169+ macrophages. Consequently, lack of TNF or TNFR1 resulted in defective immune activation and VSV clearance.
Assuntos
Interferon Tipo I/imunologia , Macrófagos/imunologia , Fator de Necrose Tumoral alfa/imunologia , Estomatite Vesicular/imunologia , Imunidade Adaptativa , Animais , Imunidade Inata , Macrófagos/virologia , Camundongos , Camundongos Endogâmicos C57BL , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/genética , Receptores Tipo I de Fatores de Necrose Tumoral/imunologia , Lectina 1 Semelhante a Ig de Ligação ao Ácido Siálico , Fator de Transcrição RelA/metabolismo , Vesiculovirus/fisiologia , Replicação ViralRESUMO
INTRODUCTION: Hematologic malignancies (HM) represent the most common neoplasms in childhood. Despite improved overall survival rates, they are still a major contributor to cancer death in children. AIMS: To determine the proportion of children with HM in pediatric palliative care (PPC) and to identify the clinical characteristics and symptoms in comparison to children with extracranial solid tumors (non HM patients). PATIENTS AND METHODS: This study was conducted as a single-center retrospective cohort study of patients in the care of a large specialized PPC team. RESULTS: Fifteen HM and 50 non HM patients were included. Symptoms in which HM patients scored significantly higher than non HM patients were mucositis, difficulty moving, somnolence, fatigue, petechiae and paleness. Blood transfusions were more frequently administered to HM patients, but large external hemorrhage was not observed in any child. A large variety of drugs and appliances were needed by the patients, with morphine being the most frequently prescribed drug. During the study period, a much larger and over the years even increasing number of HM patients (not in the care of the PPC team) died in hospital with an (assumed) curative intent, with two thirds dying in the ICU. CONCLUSIONS: Children with HM were referred to outpatient PPC with almost the full clinical picture of advanced leukemia. Noteworthy, the number of children with HM dying at home is decreasing in our center, instead a substantial proportion received high-intensity medical hospital care including novel anticancer therapies. These patients thus seem to be at an increased risk of dying in hospital as the right time to transfer them to palliative care is oftentimes missed.
RESUMO
The number of children without a diagnosis in pediatric palliative home care and the process of decision-making in these children are widely unknown. The study was conducted as single-center retrospective cohort study. Between January 2013 and September 2016, 198 children and young adults were cared for; 27 (13.6%) of these were without a clear diagnosis at the start of pediatric palliative home care. A definite diagnosis was ultimately achieved in three children. Median age was 7 years (0-25), duration of care 569 days (2-2638), and number of home visits 7.5 (2-46). Most patients are still alive (19; 70.4%). Median number of drugs administered was eight (range 2-19); antiepileptics were given most frequently. Despite the lack of a clear diagnosis (and thus prognosis), 13 (48.1%) parents faced with their critically ill and clinically deteriorating children decided in favor of a DNAR order. Comparing this with 15 brain-injured children, signs, symptoms, and supportive needs were similar in both groups. CONCLUSION: Children without a clear diagnosis are relatively common in pediatric palliative care and have-like all other patients-the right to receive optimized and symptom-adapted palliative care. Parents are less likely to choose treatment limitation for children who lack a definitive diagnosis. What is Known: ⢠A clear diagnosis is usually considered important for best-practice pediatric palliative care (PPC) including advanced care planning (ACP). ⢠Timely initiation of pediatric palliative care (PPC) is highly recommended in children with life-limiting conditions. What is New: ⢠SWAN (syndrome without a name) children show similar signs and symptoms (mostly neurological) and have similar supportive needs as brain-injured children. ⢠Defining treatment limitations in advance care planning is more difficult for parents of SWAN compared to brain-injured children.