Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Clin Endocrinol Metab ; 108(4): 865-875, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36285617

RESUMO

CONTEXT: One acute bout of exercise leads to a rapid increase in the systemic cytokine concentration. Regular exercise might alter the cytokine response, in particular in beforehand untrained and obese individuals. OBJECTIVE: Using a proximity extension assay, we studied the effects of acute exercise as well as endurance training on a panel of 92 cytokines related to inflammation. METHODS: A total of 22 individuals (30 ± 9 years; peak oxygen uptake [VO2peak] 25.2 ± 4.2 mL/[kg × min]; body mass index [BMI] 31.7 ± 4.4) participated in an 8-week endurance exercise intervention. Blood samples were collected before and immediately after 30 minutes' ergometer exercise at 80% VO2peak. RESULTS: Before and after the training intervention, 40 and 37 cytokines, respectively, were acutely increased more than 1.2-fold (Benjamini-Hochberg [BH]-adjusted P < .05). The exercise intervention did not change the acute increase in cytokines nor the resting cytokine levels, whereas fitness was improved and adiposity reduced. The increase in fitness led to a slight increase in power output when exercising at the same heart rate, which might explain the comparable increase in cytokines before and after the intervention. The largest acute increase was found for OSM, TGFA, CXCL1 and 5, and TNFSF14 (≥ 1.9-fold, BH-adjusted P < .001). The transcript levels of these proteins in whole blood were also elevated, particularly in the trained state. Only the acute increase in IL6 (1.3-fold) was related to the increase in lactate, confirming the lactate-driven secretion of IL6. CONCLUSION: Our comprehensive proteomics approach detected several underexplored serum exerkines with up to now less understood function in the adaptation to exercise.


Assuntos
Treino Aeróbico , Humanos , Citocinas , Interleucina-6 , Exercício Físico/fisiologia , Obesidade/terapia , Lactatos , Resistência Física/fisiologia
2.
J Pharm Biomed Anal ; 205: 114288, 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34371449

RESUMO

Prostate cancer (PCa) is associated with cellular metabolism alterations leading to changes of the metabolome. So far, studies investigating these alterations mainly focused on comparisons of metabolite profiles of PCa patients and healthy controls. In the present study we compared for the first time metabolite profiles in a significant number of paired urine samples collected before and eight weeks after radical prostatectomy (rPX) in 34 patients with PCa. Our comprehensive non-targeted liquid chromatographic-mass spectrometric metabolomics approach covered > 3000 metabolite ion masses. We annotated 23 metabolites showing significant changes eight weeks after rPX. While the levels of uridine and six acylcarnitines in urine were increased before surgery, lower levels were detected for 16 metabolites, like e.g. citrate, phenyl-lactic acid, choline, myo-inositol, emphasizing a relevant pathophysiological role of these biomarkers and the associated metabolic pathways. These results have important implications for potential use of metabolome analyses for detection of prostate cancer and related pathologic and molecular features.


Assuntos
Metaboloma , Neoplasias da Próstata , Humanos , Masculino , Metabolômica , Prostatectomia , Neoplasias da Próstata/cirurgia
3.
Sci Rep ; 11(1): 16642, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34404813

RESUMO

The selection of carbohydrates or fat to generate intracellular energy is thought to be crucial for long-term metabolic health. While most studies assess fuel selection after a metabolic challenge, the determinants of substrate oxidation in the fasted state remain largely unexplored. We therefore assessed the respiratory quotient by indirect calorimetry as a read-out for substrate oxidation following an overnight fast. This cross-sectional analysis consisted of 192 (92 women, 100 men) either lean or obese participants. Following an overnight fast, the respiratory quotient (RQ) was assessed, after which a 5-point 75-g oral glucose tolerance test was performed. Unlike glucose and insulin, fasting free fatty acids (FFA) correlated negatively with fasting RQ (p < 0.0001). Participants with high levels of the ketone body ß-hydroxybutyric acid had significantly lower RQ values. Fasting levels of glucose-dependent insulinotropic polypeptide (GIP) and glicentin were positively associated with fasting RQ (all p ≤ 0.03), whereas GLP-1 showed no significant association. Neither BMI, nor total body fat, nor body fat distribution correlated with fasting RQ. No relationship between the RQ and diabetes or the metabolic syndrome could be observed. In the fasting state, FFA concentrations were strongly linked to the preferentially oxidized substrate. Our data did not indicate any relationship between fasting substrate oxidation and metabolic diseases, including obesity, diabetes, and the metabolic syndrome. Since glicentin and GIP are linked to fuel selection in the fasting state, novel therapeutic approaches that target these hormones may have the potential to modulate substrate oxidation.


Assuntos
Jejum , Ácidos Graxos não Esterificados/metabolismo , Polipeptídeo Inibidor Gástrico/metabolismo , Glicentina/metabolismo , Adulto , Peso Corporal , Calorimetria Indireta , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Obesidade/metabolismo , Oxirredução
4.
Cancers (Basel) ; 12(7)2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-32640711

RESUMO

Despite it being the most common incident of cancer among men, the pathophysiological mechanisms contributing to prostate cancer (PCa) are still poorly understood. Altered mitochondrial metabolism is postulated to play a role in the development of PCa. To determine the key metabolites (which included mitochondrial oncometabolites), benign prostatic and cancer tissues of patients with PCa were analyzed using capillary electrophoresis and liquid chromatography coupled with mass spectrometry. Gene expression was studied using real-time PCR. In PCa tissues, we found reduced levels of early tricarboxylic acid cycle metabolites, whereas the contents of urea cycle metabolites including aspartate, argininosuccinate, arginine, proline, and the oncometabolite fumarate were higher than that in benign controls. Fumarate content correlated positively with the gene expression of oncogenic HIF1α and NFκB pathways, which were significantly higher in the PCa samples than in the benign controls. Furthermore, data from the TCGA database demonstrated that prostate cancer patients with activated NFκB pathway had a lower survival rate. In summary, our data showed that fumarate content was positively associated with carcinogenic genes.

5.
Proc Natl Acad Sci U S A ; 113(20): 5754-9, 2016 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-27140617

RESUMO

Metabolic syndrome is characterized by insulin resistance, obesity, and dyslipidemia. It is the consequence of an imbalance between caloric intake and energy consumption. Adiponectin protects against metabolic syndrome. Insulin-induced signaling includes activation of PI3 kinase and protein kinase B (PKB)/Akt. PKB/Akt in turn inactivates glycogen synthase kinase (GSK) 3, a major regulator of metabolism. Here, we studied the significance of PI3K-dependent GSK3 inactivation for adiponectin formation in diet-induced metabolic syndrome. Mice expressing PI3K-insensitive GSK3 (gsk3(KI)) and wild-type mice (gsk3(WT)) were fed a high-fat diet. Compared with gsk3(WT) mice, gsk3(KI) mice were protected against the development of metabolic syndrome as evident from a markedly lower weight gain, lower total body and liver fat accumulation, better glucose tolerance, stronger hepatic insulin-dependent PKB/Akt phosphorylation, lower serum insulin, cholesterol, and triglyceride levels, as well as higher energy expenditure. Serum adiponectin concentration and the activity of transcription factor C/EBPα controlling the expression of adiponectin in adipose tissue was significantly higher in gsk3(KI) mice than in gsk3(WT) mice. Treatment with GSK3 inhibitor lithium significantly decreased the serum adiponectin concentration of gsk3(KI) mice and abrogated the difference in C/EBPα activity between the genotypes. Taken together, our data demonstrate that the expression of PI3K-insensitive GSK3 stimulates the production of adiponectin and protects from diet-induced metabolic syndrome.


Assuntos
Adiponectina/biossíntese , Quinase 3 da Glicogênio Sintase/fisiologia , Síndrome Metabólica/enzimologia , Tecido Adiposo/metabolismo , Animais , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Dieta Hiperlipídica/efeitos adversos , Intolerância à Glucose/enzimologia , Resistência à Insulina , Fígado/enzimologia , Masculino , Síndrome Metabólica/etiologia , Camundongos Transgênicos , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/fisiologia
6.
Sci Rep ; 6: 21107, 2016 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-26892142

RESUMO

Subcellular lipidomics is a novel field of research that requires the careful combination of several pre-analytical and analytical steps. To define a reliable strategy for mitochondrial lipid profiling, we performed a systematic comparison of different mitochondria isolation procedures by western blot analyses and comprehensive high-resolution lipidomics. Using liver-derived HepG2 cells, we compared three common mitochondria isolation methods, differential centrifugation (DC), ultracentrifugation (UC) and a magnetic bead-assisted method (MACS). In total, 397 lipid species, including 32 cardiolipins, could be quantified in only 100 µg (by protein) of purified mitochondria. Mitochondria isolated by UC showed the highest enrichment in the mitochondria-specific cardiolipins as well as their precursors, phosphatidylglycerols. Mitochondrial fractions obtained by the commonly used DC and the more recent MACS method contained substantial contaminations by other organelles. Employing these isolation methods when performing lipidomics analyses from cell culture mitochondria may lead to inaccurate results. To conclude, we present a protocol how to obtain reliable mitochondria-specific lipid profiles from cell culture samples and show that quality controls are indispensable when performing mitochondria lipidomics.


Assuntos
Metabolismo dos Lipídeos , Lipídeos/isolamento & purificação , Metabolômica/métodos , Mitocôndrias/metabolismo , Cardiolipinas/isolamento & purificação , Cardiolipinas/metabolismo , Técnicas de Cultura de Células , Centrifugação , Análise por Conglomerados , Células Hep G2 , Humanos , Separação Imunomagnética , Organelas/metabolismo , Fluxo de Trabalho
7.
Diabetologia ; 58(8): 1845-54, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26067360

RESUMO

AIMS/HYPOTHESIS: The therapeutic benefit of physical activity to prevent and treat type 2 diabetes is commonly accepted. However, the impact of the disease on the acute metabolic response is less clear. To this end, we investigated the effect of type 2 diabetes on exercise-induced plasma metabolite changes and the muscular transcriptional response using a complementary metabolomics/transcriptomics approach. METHODS: We analysed 139 plasma metabolites and hormones at nine time points, and whole genome expression in skeletal muscle at three time points, during a 60 min bicycle ergometer exercise and a 180 min recovery phase in type 2 diabetic patients and healthy controls matched for age, percentage body fat and maximal oxygen consumption (VO2). RESULTS: Pathway analysis of differentially regulated genes upon exercise revealed upregulation of regulators of GLUT4 (SLC2A4RG, FLOT1, EXOC7, RAB13, RABGAP1 and CBLB), glycolysis (HK2, PFKFB1, PFKFB3, PFKM, FBP2 and LDHA) and insulin signal mediators in diabetic participants compared with controls. Notably, diabetic participants had normalised rates of lactate and insulin levels, and of glucose appearance and disappearance, after exercise. They also showed an exercise-induced compensatory regulation of genes involved in biosynthesis and metabolism of amino acids (PSPH, GATM, NOS1 and GLDC), which responded to differences in the amino acid profile (consistently lower plasma levels of glycine, cysteine and arginine). Markers of fat oxidation (acylcarnitines) and lipolysis (glycerol) did not indicate impaired metabolic flexibility during exercise in diabetic participants. CONCLUSIONS/INTERPRETATION: Type 2 diabetic individuals showed specific exercise-regulated gene expression. These data provide novel insight into potential mechanisms to ameliorate the disturbed glucose and amino acid metabolism associated with type 2 diabetes.


Assuntos
Aminoácidos/metabolismo , Metabolismo dos Carboidratos/genética , Diabetes Mellitus Tipo 2/metabolismo , Exercício Físico/fisiologia , Glucose/metabolismo , Glicemia/metabolismo , Calorimetria Indireta , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/genética , Humanos , Hipoglicemiantes/uso terapêutico , Masculino , Metformina/uso terapêutico , Pessoa de Meia-Idade , Músculo Esquelético/metabolismo , Consumo de Oxigênio , Compostos de Sulfonilureia/uso terapêutico
8.
Exerc Immunol Rev ; 21: 42-57, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25826388

RESUMO

The role of inflammation in skeletal muscle adaptation to exercise is complex and has hardly been elucidated so far. While the acute inflammatory response to exercise seems to promote skeletal muscle training adaptation and regeneration, persistent, low-grade inflammation, as seen in a multitude of chronic diseases, is obviously detrimental. The regulation of cytokine production in skeletal muscle cells has been relatively well studied, yet little is known about the compensatory and anti-inflammatory mechanisms that resolve inflammation and restore tissue homeostasis. One important strategy to ensure sequential, timely and controlled resolution of inflammation relies on the regulated stability of mRNAs encoding pro-inflammatory mediators. Many key transcripts in early immune responses are characterized by the presence of AU-rich elements (AREs) in the 3'-untranslated regions of their mRNAs, allowing efficient fine-tuning of gene expression patterns at the post-transcriptional level. AREs exert their function by recruiting particular RNA-binding proteins, resulting, in most cases, in de-stabilization of the target transcripts. The best-characterized ARE-binding proteins are HuR, CUGBP1, KSRP, AUF1, and the three ZFP36 proteins, especially TTP/ZFP36. Here, we give a general introduction into the role of inflammation in the adaptation of skeletal muscle to exercise. Subsequently, we focus on potential roles of ARE-binding proteins in skeletal muscle tissue in general and specifically exercise-induced skeletal muscle remodeling. Finally, we present novel data suggesting a specific function of TTP/ZFP36 in exercise-induced skeletal muscle plasticity.


Assuntos
Regiões 3' não Traduzidas/genética , Exercício Físico/fisiologia , Regulação da Expressão Gênica/fisiologia , Inflamação/fisiopatologia , Proteínas Musculares/fisiologia , Músculo Esquelético/fisiologia , Proteínas de Ligação a RNA/fisiologia , Adaptação Fisiológica/genética , Adaptação Fisiológica/fisiologia , Animais , Citocinas/genética , Citocinas/fisiologia , Humanos , Mediadores da Inflamação/fisiologia , Contração Muscular/genética , Contração Muscular/fisiologia , Músculo Esquelético/crescimento & desenvolvimento , Condicionamento Físico Animal/fisiologia , Processamento Pós-Transcricional do RNA , Estabilidade de RNA , RNA Mensageiro/metabolismo , Regeneração/fisiologia , Transcrição Gênica
9.
J Chromatogr A ; 1298: 9-16, 2013 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-23743007

RESUMO

A common challenge for scientists working with animal tissue or human biopsy samples is the limitation of material and consequently, the difficulty to perform comprehensive metabolic profiling within one experiment. Here, we present a novel approach to simultaneously perform targeted and non-targeted metabolomics as well as lipidomics from one small piece of liver or muscle tissue by ultra-high performance liquid chromatography/mass spectrometry (UHPLC/MS) following a methyl tert-butyl ether (MTBE)-based extraction. Equal relative amounts of the resulting polar and non-polar fractions were pooled, evaporated and reconstituted in the appropriate solvent for UHPLC/MS analysis. This mix was comparable or superior in yield and reproducibility to a standard 80% methanol extraction for the profiling of polar and lipophilic metabolites (free carnitine, acylcarnitines and FFA). The mix was also suitable for non-targeted metabolomics, an easy measure to increase the metabolite coverage by 30% relative to using the polar fraction alone. Lipidomics was performed from an aliquot of the non-polar fraction. This novel strategy could successfully be applied to one mouse soleus muscle with a dry weight of merely 2.5 mg. By enabling a simultaneous profiling of lipids and metabolites with mixed polarity while saving material for molecular, biochemical or histological analyses, our approach may open up new perspectives toward a comprehensive investigation of small, valuable tissue samples.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Metabolômica/métodos , Éteres Metílicos/metabolismo , Animais , Fígado/metabolismo , Masculino , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Músculos/metabolismo
10.
Am J Physiol Cell Physiol ; 304(2): C128-36, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23114963

RESUMO

Myogenic differentiation of skeletal muscle cells is characterized by a sequence of events that include activation of signal transducer and activator of transcription 3 (STAT3) and enhanced expression of its target gene Socs3. Autocrine effects of IL-6 may contribute to the activation of the STAT3-Socs3 cascade and thus to myogenic differentiation. The importance of IL-6 and STAT3 for the differentiation process was studied in C2C12 cells and in primary mouse wild-type and IL-6(-/-) skeletal muscle cells. In differentiating C2C12 myoblasts, the upregulation of IL-6 mRNA expression and protein secretion started after increased phosphorylation of STAT3 on tyrosine 705 and increased mRNA expression of Socs3 was observed. Knockdown of STAT3 and IL-6 mRNA in differentiating C2C12 myoblasts impaired the expression of the myogenic markers myogenin and MyHC IIb and subsequently myotube fusion. However, the knockdown of IL-6 did not prevent the induction of STAT3 tyrosine phosphorylation. The IL-6-independent activation of STAT3 was verified in differentiating primary IL-6(-/-) myoblasts. The phosphorylation of STAT3 and the expression levels of STAT3, Socs3, and myogenin during differentiation were comparable in the primary myoblasts independent of the genotype. However, IL-6(-/-) cells failed to induce MyHC IIb expression to the same level as in wild-type cells and showed reduced myotube formation. Supplementation of IL-6 could partially restore the fusion of IL-6(-/-) cells. These data demonstrate that IL-6 depletion during myogenic differentiation does not reduce the activation of the STAT3-Socs3 cascade, while IL-6 and STAT3 are both necessary to promote myotube fusion.


Assuntos
Diferenciação Celular , Interleucina-6/fisiologia , Desenvolvimento Muscular , Mioblastos Esqueléticos/citologia , Fator de Transcrição STAT3/metabolismo , Animais , Células Cultivadas , Técnicas de Silenciamento de Genes , Interleucina-6/genética , Camundongos , Camundongos Mutantes , Fibras Musculares Esqueléticas/metabolismo , Miogenina/biossíntese , Cadeias Pesadas de Miosina/biossíntese , Fosforilação , Fator de Transcrição STAT3/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Proteína 3 Supressora da Sinalização de Citocinas , Proteínas Supressoras da Sinalização de Citocina/biossíntese , Tirosina/metabolismo
11.
FASEB J ; 26(5): 1799-809, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22278939

RESUMO

Impaired insulin action in the brain represents an early step in the progression toward type 2 diabetes, and elevated levels of saturated free fatty acids are known to impair insulin action in prediabetic subjects. One potential mediator that links fatty acids to inflammation and insulin resistance is the Toll-like receptor (TLR) family. Therefore, C3H/HeJ/TLR2-KO (TLR2/4-deficient) mice were fed a high-fat diet (HFD), and insulin action in the brain as well as cortical and locomotor activity was analyzed by using telemetric implants. TLR2/4-deficient mice were protected from HFD-induced glucose intolerance and insulin resistance in the brain and displayed an improvement in cortical and locomotor activity that was not observed in C3H/HeJ mice. Sleep recordings revealed a 42% increase in rapid eye movement sleep in the deficient mice during daytime, and these mice spent 41% more time awake during the night period. Treatment of control mice with a neutralizing IL-6 antibody improved insulin action in the brain as well as cortical activity and diminished osteopontin protein to levels of the TLR2/4-deficient mice. Together, our data suggest that the lack of functional TLR2/4 protects mice from a fat-mediated impairment in insulin action, brain activity, locomotion, and sleep architecture by an IL-6/osteopontin-dependent mechanism.


Assuntos
Encéfalo/fisiologia , Insulina/fisiologia , Interleucina-6/fisiologia , Osteopontina/fisiologia , Sono , Receptor 2 Toll-Like/fisiologia , Receptor 4 Toll-Like/fisiologia , Animais , Astrócitos/metabolismo , Células Cultivadas , Eletroencefalografia , Teste de Tolerância a Glucose , Resistência à Insulina , Interleucina-6/imunologia , Locomoção , Camundongos , Camundongos Endogâmicos C3H , Camundongos Knockout , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Receptor 2 Toll-Like/genética , Receptor 4 Toll-Like/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA