RESUMO
ß-Cell replacement for type 1 diabetes (T1D) can restore normal glucose homeostasis, thereby eliminating the need for exogenous insulin and halting the progression of diabetes complications. Success in achieving insulin independence following transplantation of cadaveric islets fueled academic and industry efforts to develop techniques to mass produce ß cells from human pluripotent stem cells, and these have now been clinically validated as an alternative source of regulated insulin production. Various encapsulation strategies are being pursued to contain implanted cells in a retrievable format, and different implant sites are being explored with some strategies reaching clinical studies. Stem cell lines, whether derived from embryonic sources or reprogrammed somatic cells, are being genetically modified for designer features, including immune evasiveness to enable implant without the use of chronic immunosuppression. Although hurdles remain in optimizing large-scale manufacturing, demonstrating efficacy, durability, and safety, products containing stem cell-derived ß cells promise to provide a potent treatment for insulin-dependent diabetes.
RESUMO
Fluorinated ethylene propylene (FEP) vessels are of significant interest for therapeutic cell biomanufacturing applications due to their chemical inertness, hydrophobic surface, and high oxygen permeability. However, these properties also limit the adhesion and survival of anchorage-dependent cells. Here, we develop novel plasma polymer coatings to modify FEP surfaces, enhancing the adhesion and expansion of human mesenchymal stromal cells (hMSCs). Similar to commercially available tissue culture polystyrene vessels, oxygen-rich or nitrogen-rich surface chemistries can be achieved using this approach. While steam sterilization increased the roughness of the coatings and altered the surface chemistry, the overall wettability and oxygen or nitrogen-rich nature of the coatings were maintained. In the absence of proteins during initial cell attachment, cells adhered to surfaces even in the presence of chelators, whereas adhesion was abrogated with chelator in a protein-containing medium, suggesting that integrin-mediated adhesion predominates over physicochemical tethering in normal protein-containing cell seeding conditions. Albumin adsorption was more elevated on nitrogen-rich coatings compared to the oxygen-rich coatings, which was correlated with a higher extent of hMSC expansion after 3 days. Both the oxygen and nitrogen-rich coatings significantly improved hMSC adhesion and expansion compared to untreated FEP. FEP surfaces with nitrogen-rich coatings were practically equivalent to commercially available standard tissue culture-treated polystyrene surfaces in terms of hMSC yields. Plasma polymer coatings show significant promise in expanding the potential usage of FEP-based culture vessels for cell therapy applications.
Assuntos
Células-Tronco Mesenquimais , Polímeros , Humanos , Polímeros de Fluorcarboneto , Poliestirenos , Nitrogênio , Oxigênio , Propriedades de Superfície , Adesão CelularRESUMO
Type 1 diabetes (T1D) is an autoimmune disease that leads to the loss of insulin-producing beta cells. Bioartificial pancreas (BAP) or beta cell replacement strategies have shown promise in curing T1D and providing long-term insulin independence. Hypoxia (low oxygen concentration) that may occur in the BAP devices due to cell oxygen consumption at the early stages after implantation damages the cells, in addition to imposing limitations to device dimensions when translating promising results from rodents to humans. Finding ways to provide cells with sufficient oxygenation remains the major challenge in realizing BAP devices' full potential. Therefore, in vitro oxygen imaging assessment of BAP devices is crucial for predicting the devices' in vivo efficiency. Electron paramagnetic resonance oxygen imaging (EPROI, also known as electron MRI or eMRI) is a unique imaging technique that delivers absolute partial pressure of oxygen (pO2) maps and has been used for cancer hypoxia research for decades. However, its applicability for assessing BAP devices has not been explored. EPROI utilizes low magnetic fields in the mT range, static gradients, and the linear relationship between the spin-lattice relaxation rate (R1) of oxygen-sensitive spin probes such as trityl OX071 and pO2 to generate oxygen maps in tissues. With the support of the Juvenile Diabetes Research Foundation (JDRF), an academic-industry partnership consortium, the "Oxygen Measurement Core" was established at O2M to perform oxygen imaging assessment of BAP devices originated from core members' laboratories. This article aims to establish the protocols and demonstrate a few examples of in vitro oxygen imaging of BAP devices using EPROI. All pO2 measurements were performed using a recently introduced 720 MHz/25 mT preclinical oxygen imager instrument, JIVA-25™. We began by performing pO2 calibration of the biomaterials used in BAPs at 25 mT magnetic field since no such data exist. We compared the EPROI pO2 measurement with a single-point probe for a few selected materials. We also performed trityl OX071 toxicity studies with fibroblasts, as well as insulin-producing cells (beta TC6, MIN6, and human islet cells). Finally, we performed proof-of-concept in vitro pO2 imaging of five BAP devices that varied in size, shape, and biomaterials. We demonstrated that EPROI is compatible with commonly used biomaterials and that trityl OX071 is nontoxic to cells. A comparison of the EPROI with a fluorescent-based point oxygen probe in selected biomaterials showed higher accuracy of EPROI. The imaging of typically heterogenous BAP devices demonstrated the utility of obtaining oxygen maps over single-point measurements. In summary, we present EPROI as a quality control tool for developing efficient cell transplantation devices and artificial tissue grafts. Although the focus of this work is encapsulation systems for diabetes, the techniques developed in this project are easily transferable to other biomaterials, tissue grafts, and cell therapy devices used in the field of tissue engineering and regenerative medicine (TERM). In summary, EPROI is a unique noninvasive tool to experimentally study oxygen distribution in cell transplantation devices and artificial tissues, which can revolutionize the treatment of degenerative diseases like T1D.
Assuntos
Diabetes Mellitus Tipo 1 , Insulinas , Humanos , Oxigênio , Diabetes Mellitus Tipo 1/terapia , Hipóxia , Materiais BiocompatíveisRESUMO
Maximizing the re-endothelialization of vascular implants such as prostheses or stents has the potential to significantly improve their long-term performance. Endothelial progenitor cell capture stents with surface-immobilized antibodies show significantly improved endothelialization in the clinic. However, most current antibody-based stent surface modification strategies rely on antibody adsorption or direct conjugation via amino or carboxyl groups which leads to poor control over antibody surface concentration and/or molecular orientation, and ultimately bioavailability for cell capture. Here, we assess the utility of a bioaffinity-based surface modification strategy to immobilize antibodies targeting endothelial cell surface antigens. A cysteine-tagged truncated protein G polypeptide containing three Fc-binding domains was conjugated onto aminated polystyrene substrates via a bi-functional linking arm, followed by antibody immobilization. Different IgG antibodies were successfully immobilized on the protein G-modified surfaces. Covalent grafting of the protein G polypeptide was more effective than surface adsorption in immobilizing antibodies at high density based on fluorophore-labeled secondary antibody detection, as well as endothelial colony-forming cell capture through anti-CD144 antibodies. This work presents a potential avenue for enhancing the performance of cell capture strategies by using covalent grafting of protein G polypeptides to immobilize IgG antibodies.
Assuntos
Células Progenitoras Endoteliais , Anticorpos Imobilizados , Imunoglobulina G , Peptídeos , StentsRESUMO
In Cell Stem Cell, Aghazadeh et al.1 show that human embryonic stem cell-derived pancreatic progenitors can reverse hyperglycemia for several weeks in streptozotocin-induced diabetic mice when co-transplanted with microvessel fragments into the subcutaneous space.
Assuntos
Diabetes Mellitus Experimental , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Animais , Amigos , Humanos , Camundongos , MicrovasosRESUMO
BACKGROUND: A major obstacle to anti-viral and -tumor cell vaccination and T cell immunotherapy is the ability to produce dendritic cells (DCs) in a suitable clinical setting. It is imperative to develop closed cell culture systems to accelerate the translation of promising DC-based cell therapy products to the clinic. The objective of this study was to investigate whether viral antigen-loaded monocyte-derived DCs (Mo-DCs) capable of eliciting specific T cell activation can be manufactured in fluorinated ethylene propylene (FEP) bags. METHODS: Mo-DCs were generated through a protocol applying cytokine cocktails combined with lipopolysaccharide or with a CMV viral peptide antigen in conventional tissue culture polystyrene (TCPS) or FEP culture vessels. Research-scale (< 10 mL) FEP bags were implemented to increase R&D throughput. DC surface marker profiles, cytokine production, and ability to activate antigen-specific cytotoxic T cells were characterized. RESULTS: Monocyte differentiation into Mo-DCs led to the loss of CD14 expression with concomitant upregulation of CD80, CD83 and CD86. Significantly increased levels of IL-10 and IL-12 were observed after maturation on day 9. Antigen-pulsed Mo-DCs activated antigen-responsive CD8+ cytotoxic T cells. No significant differences in surface marker expression or tetramer-specific T cell activating potency of Mo-DCs were observed between TCPS and FEP culture vessels. CONCLUSIONS: Our findings demonstrate that viral antigen-loaded Mo-DCs produced in downscaled FEP bags can elicit specific T cell responses. In view of the dire clinical need for closed system DC manufacturing, FEP bags represent an attractive option to accelerate the translation of promising emerging DC-based immunotherapies.
Assuntos
Antígenos Virais , Células Dendríticas , Técnicas de Cultura de Células , Monócitos , Politetrafluoretileno/análogos & derivadosRESUMO
Antibody surface immobilization is a promising strategy to capture cells of interest from circulating fluids in vitro and in vivo. An application of particular interest in vascular interventions is to capture endothelial progenitor cells (EPCs) on the surface of stents to accelerate endothelialization. The clinical impact of EPC capture stents has been limited by the lack of efficient selective cell capture. Here, we describe a simple method to immobilize a variety of immunoglobulin G antibodies through their fragment crystallizable (Fc) regions via surface-conjugated RRGW peptides for cell capture applications. As an EPC capture model, peripheral blood endothelial colony-forming cells suspended in cell culture medium with up to 70% serum were captured by immobilized anti-CD144, anti-CD34 or anti-CD309 antibodies under laminar flow. The endothelial colony-forming cells were successfully enriched from a mixture with peripheral blood mononuclear cells using surfaces with anti-CD309 but not anti-CD45. This antibody immobilization approach holds great promise to engineer vascular biomaterials with improved EPC capture potential. The ease of immobilizing different antibodies using the same Fc-binding peptide surface grafting chemistry renders this platform suitable to screen antibodies that maximize cell capture efficiency and selectivity.
Assuntos
Células Progenitoras Endoteliais , Anticorpos , Endotélio , Leucócitos Mononucleares , PeptídeosRESUMO
Pluripotent stem cell (PSC)-derived insulin-producing cells are a promising cell source for diabetes cellular therapy. However, the efficiency of the multi-step process required to differentiate PSCs towards pancreatic beta cells is variable between cell lines, batches and even within cultures. In adherent pancreatic differentiation protocols, we observed spontaneous local clustering of cells expressing elevated nuclear expression of pancreatic endocrine transcription factors, PDX1 and NKX6.1. Since aggregation has previously been shown to promote downstream differentiation, this local clustering may contribute to the variability in differentiation efficiencies observed within and between cultures. We therefore hypothesized that controlling and directing the spontaneous clustering process would lead to more efficient and consistent induction of pancreatic endocrine fate. Micropatterning cells in adherent microwells prompted clustering, local cell density increases, and increased nuclear accumulation of PDX1 and NKX6.1. Improved differentiation profiles were associated with distinct filamentous actin architectures, suggesting a previously overlooked role for cell-driven morphogenetic changes in supporting pancreatic differentiation. This work demonstrates that confined differentiation in cell-adhesive micropatterns may provide a facile, scalable, and more reproducible manufacturing route to drive morphogenesis and produce well-differentiated pancreatic cell clusters.
Assuntos
Diferenciação Celular/fisiologia , Sangue Fetal/citologia , Proteínas de Homeodomínio/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Células Secretoras de Insulina/metabolismo , Transativadores/metabolismo , Citoesqueleto de Actina/metabolismo , Adulto , Adesão Celular , Células Cultivadas , Diabetes Mellitus Tipo 1/terapia , Humanos , Transplante das Ilhotas Pancreáticas , Fenótipo , Reação em Cadeia da Polimerase em Tempo RealRESUMO
Cell microencapsulation is a promising approach to improve cell therapy outcomes by protecting injected cells from rapid dispersion and allowing bidirectional diffusion of nutrients, oxygen, and waste that promote cell survival in the target tissues. Here, we describe a simple and scalable emulsification method to encapsulate animal cells in chitosan microbeads using thermosensitive gel formulations without any chemical modification and cross-linker. The process consists of a water-in-oil emulsion where the aqueous phase droplets contain cells (L929 fibroblasts or human mesenchymal stromal cells), chitosan acidic solution and gelling agents (sodium hydrogen carbonate and phosphate buffer or beta-glycerophosphate). The oil temperature is maintained at 37 °C, allowing rapid physical gelation of the microbeads. Alginate beads prepared with the same method were used as a control. Microbeads with a diameter of 300-450 µm were successfully produced. Chitosan and alginate (2% w/v) microbeads presented similar rigidity in compression, but chitosan microbeads endured >80% strain without rupture, while alginate microbeads presented fragile breakage at <50% strain. High cell viability and metabolic activity were observed after up to 7 days in culture for encapsulated cells. Mesenchymal stromal cells encapsulated in chitosan microbeads released higher amounts of the vascular endothelial growth factor after 24 h compared to the cells encapsulated in manually cast macrogels. Moreover, microbeads were injectable through 23G needles without significant deformation or rupture. The emulsion-generated chitosan microbeads are a promising delivery vehicle for therapeutic cells because of their cytocompatibility, biodegradation, mechanical strength, and injectability. Clinical-scale encapsulation of therapeutic cells such as mesenchymal stromal cells in chitosan microbeads can readily be achieved using this simple and scalable emulsion-based process.
Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Quitosana , Microesferas , Alginatos , Animais , Humanos , Fator A de Crescimento do Endotélio VascularRESUMO
Conventional cell culture surfaces typically consist of polystyrene, with or without surface modifications created through plasma treatment or protein/peptide coating strategies. Other polymers such as fluorinated ethylene propylene are increasingly being implemented in the design of closed cell culture vessels, for example to facilitate the production of cells for cancer immunotherapy. Cultured cells are sensitive to culture vessel material changes through different mechanisms including cell-surface interactions, which are in turn dependent on the amount, type, and conformation of proteins adsorbed on the surface. Here, we investigate the protein deposition from cell culture medium onto untreated polystyrene and fluoropolymer surfaces using quartz crystal microbalance with dissipation monitoring and atomic force microscopy. Both of these non-polar surfaces showed comparable protein deposition kinetics and resulted in similar mechanical and topographical film properties. At protein concentrations found in typical serum-free media used to culture dendritic cells, two deposition phases can be observed. The protein layers form within the first few minutes of contact with the cell culture medium and likely consist almost exclusively of albumin. It is indicated that initial protein film formation will be completed prior to cell settling and initial cell contact will be established with the secondary protein layer. The structural properties of the protein film surface will strongly depend on the albumin concentration in the medium and presumably be less affected by the chemical composition of the cell culture surface.
Assuntos
Microscopia de Força Atômica/métodos , Poliestirenos/química , Proteínas/química , Técnicas de Microbalança de Cristal de Quartzo/métodos , Adsorção , Animais , Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Células Cultivadas , Polímeros/química , Proteínas/metabolismo , Soroalbumina Bovina/química , Propriedades de SuperfícieRESUMO
In recent years, cell-based therapies targeting the immune system have emerged as promising strategies for cancer treatment. This review summarizes manufacturing challenges related to production of antigen presenting cells as a patient-tailored cancer therapy. Understanding cell-material interactions is essential because in vitro cell culture manipulations to obtain mature antigen-producing cells can significantly alter their in vivo performance. Traditional antigen-producing cell culture protocols often rely on cell adhesion to surface-treated hydrophilic polystyrene flasks. More recent commercial and investigational cancer immunotherapy products were manufactured using suspension cell culture in closed hydrophobic fluoropolymer bags. The shift to closed cell culture systems can decrease risks of contamination by individual operators, as well as facilitate scale-up and automation. Selecting closed cell culture bags over traditional open culture systems entails different handling procedures and processing controls, which can affect product quality. Changes in culture vessels also entail changes in vessel materials and geometry, which may alter the cell microenvironment and resulting cell fate decisions. Strategically designed culture systems will pave the way for the generation of more sophisticated and highly potent cell-based cancer vaccines. As an increasing number of cell-based therapies enter the clinic, the selection of appropriate cell culture vessels and materials becomes a critical consideration that can impact the therapeutic efficacy of the product, and hence clinical outcomes and patient quality of life.
Assuntos
Técnicas de Cultura de Células/métodos , Células Dendríticas/metabolismo , Imunoterapia/métodos , Humanos , Qualidade de VidaRESUMO
The interactions between monocytes and biomaterials can potentially be modulated by controlling the chemical and structural surface properties of biomaterials. The objective of this study was to determine the effect of plasma-deposited functional organic coatings on monocyte adhesion and differentiation into macrophages. Organic coatings with varying oxygen and nitrogen concentration were prepared by low-pressure plasma co-polymerization of binary gas mixtures combining a hydrocarbon (butadiene/ethylene) and a heteroatom-containing gas (carbon dioxide/ammonia) to deposit either oxygen or nitrogen-containing coatings. The deposition parameters controlled the composition of the coatings and, consequently, the surface charge (between 26â¯mV and -28â¯mV) and wettability. The adhesion of myeloid leukemia cell lines U937 and NB4 as well as human monocytes to plasma polymerized coatings, was tested using cell culture medium with and without fetal bovine serum. The results showed that the concentration of [-NH2] and [-COOH] on the surface of the plasma polymers, controls the adhesion of U937 and NB4 cell lines to the coatings. Thus, above a certain composition threshold, i.e. [-NH2]=2.6-3.0% and [-COOH]=1.2-1.57â¯nmol/cm2, the surface facilitates adhesion of both cell lines, irrespective of the culture medium used. Based on qualitative observations the number of monocytes adhering to the coatings was proportional to the concentration of functional groups at the surface of the coatings. The surface plasmon resonance results, in line with cell culture experiments, indicated that the presence of albumin on the surfaces with [-NH2] and [-COOH] above the determined critical concentration may be an indicator of monocyte adhesion to these plasma polymers.
Assuntos
Adesão Celular/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/farmacologia , Macrófagos/efeitos dos fármacos , Monócitos/efeitos dos fármacos , Nitrogênio/química , Oxigênio/química , Benzaldeídos/farmacologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Materiais Revestidos Biocompatíveis/química , Humanos , Gases em Plasma/farmacologia , Propriedades de SuperfícieRESUMO
BACKGROUND: Pancreatic adenocarcinoma is one of the most lethal cancers, yet it remains understudied and poorly understood. Hyperinsulinemia has been reported to be a risk factor of pancreatic cancer, and the rapid rise of hyperinsulinemia associated with obesity and type 2 diabetes foreshadows a rise in cancer incidence. However, the actions of insulin at the various stages of pancreatic cancer progression remain poorly defined. METHODS: Here, we examined the effects of a range of insulin doses on signalling, proliferation and survival in three human cell models meant to represent three stages in pancreatic cancer progression: primary pancreatic duct cells, the HPDE immortalized pancreatic ductal cell line, and the PANC1 metastatic pancreatic cancer cell line. Cells were treated with a range of insulin doses, and their proliferation/viability were tracked via live cell imaging and XTT assays. Signal transduction was assessed through the AKT and ERK signalling pathways via immunoblotting. Inhibitors of AKT and ERK signalling were used to determine the relative contribution of these pathways to the survival of each cell model. RESULTS: While all three cell types responded to insulin, as indicated by phosphorylation of AKT and ERK, we found that there were stark differences in insulin-dependent proliferation, cell viability and cell survival among the cell types. High concentrations of insulin increased PANC1 and HPDE cell number, but did not alter primary duct cell proliferation in vitro. Cell survival was enhanced by insulin in both primary duct cells and HPDE cells. Moreover, we found that primary cells were more dependent on AKT signalling, while HPDE cells and PANC1 cells were more dependent on RAF/ERK signalling. CONCLUSIONS: Our data suggest that excessive insulin signalling may contribute to proliferation and survival in human immortalized pancreatic ductal cells and metastatic pancreatic cancer cells, but not in normal adult human pancreatic ductal cells. These data suggest that signalling pathways involved in cell survival may be rewired during pancreatic cancer progression.
Assuntos
Carcinoma Ductal Pancreático/metabolismo , Transformação Celular Neoplásica/metabolismo , Insulina/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Neoplasias Pancreáticas/metabolismo , Benzilaminas/farmacologia , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Progressão da Doença , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Indóis/farmacologia , Modelos Biológicos , Ductos Pancreáticos , Neoplasias Pancreáticas/patologia , Fenóis/farmacologia , Fosforilação , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-raf/efeitos dos fármacos , Quinoxalinas/farmacologiaRESUMO
Intimal hyperplasia and thrombosis are responsible for the poor patency rates of small-diameter vascular grafts. These complications could be avoided by a rapid and strong adhesion of endothelial cells to the prosthetic surfaces, which typically consist of expanded polytetrafluoroethylene (PTFE) for small-diameter vessels. We have previously described two peptide micropatterning strategies that increase the endothelialization rates of PTFE. The micropatterns were generated either by inkjet printing 300 µm squares or by spraying 10.1 ± 0.1 µm diameter droplets of the CGRGDS cell adhesion peptide, while the remaining surface was functionalized using the CWQPPRARI cell migration peptide. We now directly compare these two micropatterning strategies and examine the effect of hydrodynamic stress on human saphenous vein endothelial cells grown on the patterned surfaces. No significant differences in cell adhesion were observed between the two micropatterning methods. When compared to unpatterned surfaces treated with a uniform mixture of the two peptides, the cell expansion was significantly higher on sprayed or printed surfaces after 9 days of static cell culture. In addition, after 6 h of exposure to hydrodynamic stress, the cell retention and cell cytoskeleton reorganization on the patterned surfaces was improved when compared to untreated or random treated surfaces. These results indicate that micropatterned surfaces lead to improved rates of PTFE endothelialization with higher resistance to hydrodynamic stress.
Assuntos
Prótese Vascular , Células Endoteliais/metabolismo , Peptídeos/química , Politetrafluoretileno/química , Veia Safena/metabolismo , Estresse Fisiológico , Adesão Celular , Proliferação de Células , Células Cultivadas , Citoesqueleto/metabolismo , Células Endoteliais/citologia , Humanos , Hidrodinâmica , Veia Safena/citologiaRESUMO
The proliferation of pancreatic duct-like CK19+ cells has implications for multiple disease states including pancreatic cancer and diabetes mellitus. The in vitro study of this important cell type has been hampered by their limited expansion compared to fibroblast-like vimentin+ cells that overgrow primary cultures. We aimed to develop a screening platform for duct cell mitogens after depletion of the vimentin+ population. The CD90 cell surface marker was used to remove the vimentin+ cells from islet-depleted human pancreas cell cultures by magnetic-activated cell sorting. Cell sorting decreased CD90+ cell contamination of the cultures from 34±20% to 1.3±0.6%, yielding purified CK19+ cultures with epithelial morphology. A full-factorial experimental design was then applied to test the mitogenic effects of bFGF, EGF, HGF, KGF and VEGF. After 6 days in test conditions, the cells were labelled with BrdU, stained and analyzed by high-throughput imaging. This screening assay confirmed the expected mitogenic effects of bFGF, EGF, HGF and KGF on CK19+ cells and additionally revealed interactions between these factors and VEGF. A serum-free medium containing bFGF, EGF, HGF and KGF led to CK19+ cell expansion comparable to the addition of 10% serum. The methods developed in this work should advance pancreatic cancer and diabetes research by providing effective cell culture and high-throughput screening platforms to study purified primary pancreatic CK19+ cells.
Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Mitose/efeitos dos fármacos , Ductos Pancreáticos/citologia , Soro , Adulto , Técnicas de Cultura de Células , Células Cultivadas , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mitose/fisiologia , Ductos Pancreáticos/metabolismo , Antígenos Thy-1/biossínteseRESUMO
Achieving high-level expansion of hematopoietic stem cells (HSCs) in vitro will have an important clinical impact in addition to enabling elucidation of their regulation. Here, we couple the ability of engineered NUP98-HOXA10hd expression to stimulate > 1000-fold net expansions of murine HSCs in 10-day cultures initiated with bulk lin(-)Sca-1(+)c-kit(+) cells, with strategies to purify fetal and adult HSCs and analyze their expansion clonally. We find that NUP98-HOXA10hd stimulates comparable expansions of HSCs from both sources at â¼ 60% to 90% unit efficiency in cultures initiated with single cells. Clonally expanded HSCs consistently show balanced long-term contributions to the lymphoid and myeloid lineages without evidence of leukemogenic activity. Although effects on fetal and adult HSCs were indistinguishable, NUP98-HOXA10hd-transduced adult HSCs did not thereby gain a competitive advantage in vivo over freshly isolated fetal HSCs. Live-cell image tracking of single transduced HSCs cultured in a microfluidic device indicates that NUP98-HOXA10hd does not affect their proliferation kinetics, and flow cytometry confirmed the phenotype of normal proliferating HSCs and allowed reisolation of large numbers of expanded HSCs at a purity of 25%. These findings point to the effects of NUP98-HOXA10hd on HSCs in vitro being mediated by promoting self-renewal and set the stage for further dissection of this process.