Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Neurotrauma ; 39(21-22): 1561-1574, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35722903

RESUMO

Cognitive impairments and emotional lability are common long-term consequences of traumatic brain injury (TBI). How TBI affects interactions between sensory, cognitive, and emotional systems may reveal mechanisms that underlie chronic mental health comorbidities. Previously, we reported changes in auditory-emotional network activity and enhanced fear learning early after TBI. In the current study, we asked whether TBI has long-term effects on fear learning and responses to novel stimuli. Four weeks following lateral fluid percussion injury (FPI) or sham surgery, adult male rats were fear conditioned to either white noise-shock or tone-shock pairing, or shock-only control and subsequently were tested for freezing to context and to the trained or novel auditory cues in a new context. FPI groups showed greater freezing to their trained auditory cue, indicating long-term TBI enhanced fear. Interestingly, FPI-Noise Shock animals displayed robust fear to the novel, untrained tone compared with Sham-Noise Shock across both experiments. Shock Only groups did not differ in freezing to either auditory stimulus. These findings suggest that TBI precipitates maladaptive associative fear generalization rather than non-associative sensitization. Basolateral amygdala (BLA) α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAr) subunits GluA1 and GluA2 levels were analyzed and the FPI-Noise Shock group had increased GluA1 (but not GluA2) levels that correlated with the level of tone fear generalization. This study illustrates a unique chronic TBI phenotype with both a cognitive impairment and increased fear and possibly altered synaptic transmission in the amygdala long after TBI, where stimulus generalization may underlie maladaptive fear and hyperarousal.


Assuntos
Lesões Encefálicas Traumáticas , Lesão Encefálica Crônica , Medo , Receptores de AMPA , Animais , Masculino , Ratos , Tonsila do Cerebelo/metabolismo , Lesões Encefálicas Traumáticas/metabolismo , Medo/psicologia , Receptores de AMPA/metabolismo
2.
Neurotrauma Rep ; 2(1): 200-213, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33937912

RESUMO

Traumatic brain injury (TBI)-induced disruptions in synaptic function within brain regions and across networks in the limbic system may underlie a vulnerability for maladaptive plasticity and contribute to behavioral comorbidities. In this study we measured how synaptic proteins respond to lateral fluid percussion injury (FPI) brain regions known to regulate emotion and memory, including the basolateral amygdala (BLA), dorsal and ventral hippocampus (DH, VH), and medial prefrontal cortex (PFC). We investigated proteins involved in regulating plasticity, including synaptic glutamatergic a-amino-3-hydroxy5-methyl-4-isoxazolepropionic acid (AMPA; GluA1, GluA2) and N-methyl-D-aspartate (NMDA; NR1, NR2A, NR2B) receptor subunits as well as inhibitory gamma-aminobutyric acid (GABA) synthetic enzymes (GAD67, GAD65) via western blot. Adult male rats received a mild-moderate lateral FPI or sham surgery and ipsi- and contralateral BLA, DH, VH, and PFC were collected 6 h, 24 h, 48 h, and 7 days post-injury. In the ipsilateral BLA, there was a significant decrease in NR1 and GluA2 24 h after injury, whereas NR2A and NR2B were increased in the contralateral BLA at 48 h compared with sham. GAD67 was increased ipsilaterally at 24 h, but decreased contralaterally at 48 h in the BLA. In the DH, both NMDA (NR2A, NR2B) and GABA-synthetic (GAD65, GAD67) proteins were increased acutely at 6 h compared with sham. GAD67 was also robustly increased in the ipsilateral VH at 6 h. In the contralateral VH, NR2A significantly increased between 6 h and 24 h after FPI, whereas GAD65 was decreased across the same time-points in the contralateral VH. In the medial PFC at 24 h we saw bilateral increases in GAD67 and a contralateral decrease in GluA1. Later, there was a significant decrease in GAD67 in contralateral PFC from 48 h to 7 days post-injury. Collectively, these data suggest that lateral FPI causes a dynamic homeostatic response across limbic networks, leading to an imbalance of the proteins involved in plasticity in neural systems underlying cognitive and emotional regulation.

3.
Front Neurol ; 11: 553190, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33324313

RESUMO

Traumatic brain injury (TBI) is associated with high rates of post-injury psychiatric and neurological comorbidities. TBI is more common in males than females despite females reporting more symptoms and longer recovery following TBI and concussion. Both pain and mental health conditions like anxiety and post-traumatic stress disorder (PTSD) are more common in women in the general population, however the dimorphic comorbidity in the TBI population is not well-understood. TBI may predispose the development of maladaptive anxiety or PTSD following a traumatic stressor, and the impact of sex on this interaction has not been investigated. We have shown that white noise is noxious to male rats following fluid percussion injury (FPI) and increases fear learning when used in auditory fear conditioning, but it is unclear whether females exhibit a similar phenotype. Adult female and male rats received either lateral FPI or sham surgery and 48 h later received behavioral training. We first investigated sex differences in response to 75 dB white noise followed by white noise-signaled fear conditioning. FPI groups exhibited defensive behavior to the white noise, which was significantly more robust in females, suggesting FPI increased auditory sensitivity. In another experiment, we asked how FPI affects contextual fear learning in females and males following unsignaled footshocks of either strong (0.9 mA) or weaker (0.5 mA) intensity. We saw that FPI led to rapid acquisition of contextual fear compared to sham. A consistent pattern of increased contextual fear after TBI was apparent in both sexes across experiments under differing conditioning protocols. Using a light gradient open field task we found that FPI females showed a defensive photophobia response to light, a novel finding supporting TBI enhanced sensory sensitivity across modalities in females. General behavioral differences among our measures were observed between sexes and discussed with respect to interpretations of TBI effects for each sex. Together our data support enhanced fear following a traumatic stressor after TBI in both sexes, where females show greater sensitivity to sensory stimuli across multiple modalities. These data demonstrate sex differences in emergent defensive phenotypes following TBI that may contribute to comorbid PTSD, anxiety, and other neurological comorbidities.

4.
Eur J Neurosci ; 40(9): 3351-62, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25156382

RESUMO

Chronic restraint stress impairs hippocampal-mediated spatial learning and memory, which improves following a post-stress recovery period. Here, we investigated whether brain-derived neurotrophic factor (BDNF), a protein important for hippocampal function, would alter the recovery from chronic stress-induced spatial memory deficits. Adult male Sprague-Dawley rats were infused into the dorsal hippocampal cornu ammonis (CA)3 region with an adeno-associated viral vector containing the sequence for a short hairpin RNA (shRNA) directed against BDNF or a scrambled sequence (Scr). Rats were then chronically restrained (wire mesh, 6 h/day for 21 days) and assessed for spatial learning and memory using a radial arm water maze (RAWM) either immediately after stressor cessation (Str-Imm) or following a 21-day post-stress recovery period (Str-Rec). All groups learned the RAWM task similarly, but differed on the memory retention trials. Rats in the Str-Imm group, regardless of adeno-associated viral contents, committed more errors in the spatial reference memory domain on the single retention trial during day 3 than did the non-stressed controls. Importantly, the typical improvement in spatial memory following the recovery from chronic stress was blocked with the shRNA against BDNF, as Str-Rec-shRNA performed worse on the RAWM compared with the non-stressed controls or Str-Rec-Scr. The stress effects were specific for the reference memory domain, but knockdown of hippocampal BDNF in unstressed controls briefly disrupted spatial working memory as measured by repeated entry errors on day 2 of training. These results demonstrated that hippocampal BDNF was necessary for the recovery from stress-induced hippocampal-dependent spatial memory deficits in the reference memory domain.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Região CA3 Hipocampal/metabolismo , Memória Espacial/fisiologia , Estresse Psicológico/metabolismo , Animais , Regulação para Baixo , Masculino , Ratos , Ratos Sprague-Dawley , Restrição Física
5.
Neurobiol Learn Mem ; 112: 139-47, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24508064

RESUMO

Chronic stress may impose a vulnerability to develop maladaptive fear-related behaviors after a traumatic event. Whereas previous work found that chronic stress impairs the acquisition and recall of extinguished fear, it is unknown how chronic stress impacts nonassociative fear, such as in the absence of the conditioned stimulus (CS) or in a novel context. Male rats were subjected to chronic stress (STR; wire mesh restraint 6 h/d/21d) or undisturbed (CON), then tested on fear acquisition (3 tone-footshock pairings), and two extinction sessions (15 tones/session) within the same context. Then each group was tested (6 tones) in the same context (SAME) or a novel context (NOVEL), and brains were processed for functional activation using Fos immunohistochemistry. Compared to CON, STR showed facilitated fear acquisition, resistance to CS extinction on the first extinction day, and robust recovery of fear responses on the second extinction day. STR also showed robust freezing to the context alone during the first extinction day compared to CON. When tested in the same or a novel context, STR exhibited higher freezing to context than did CON, suggesting that STR-induced fear was independent of context. In support of this, STR showed increased Fos-like expression in the basolateral amygdala and CA1 region of the hippocampus in both the SAME and NOVEL contexts. Increased Fos-like expression was also observed in the central amygdala in STR-NOVEL vs. CON-NOVEL. These data demonstrate that chronic stress enhances fear learning and impairs extinction, and affects nonassociative processes as demonstrated by enhanced fear in a novel context.


Assuntos
Tonsila do Cerebelo/metabolismo , Extinção Psicológica/fisiologia , Medo/fisiologia , Generalização Psicológica/fisiologia , Hipocampo/metabolismo , Proteínas Proto-Oncogênicas c-fos/biossíntese , Transtornos de Estresse Pós-Traumáticos/etiologia , Estresse Psicológico/complicações , Animais , Doença Crônica , Condicionamento Psicológico/fisiologia , Modelos Animais de Doenças , Reação de Congelamento Cataléptica/fisiologia , Masculino , Ratos , Ratos Sprague-Dawley , Estresse Psicológico/metabolismo
6.
Stress ; 16(5): 587-91, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23662914

RESUMO

Stressors are typically multidimensional, comprised of multiple physical and sensory components that rarely occur as single isolated events. This study used a 2-day stress exposure paradigm to assess functional activation patterns (by Fos expression) in key corticolimbic structures following repeated context, repeated restraint, context followed by restraint or restraint followed by context. On day 1, rats were transported to a novel context and either restrained for 6 h or left undisturbed. On day 2, these two groups were either restrained or not in the same context, then processed for Fos immunohistochemistry. Regardless of prior stress experience, rats exposed to context only on day 2 expressed more Fos-like immunoreactive (IR) labeling in CA1 and CA3 of dorsal hippocampus, basolateral amygdala and central amygdala than those that were not. This pattern was reversed in the dentate gyrus infrapyramidal blade. In contrast, in the infralimbic region of the medial prefrontal cortex (mPFC), the experience of a single restraint on either day 1 or day 2 rats elevated Fos-like IR relative to rats that had been exposed to context alone. These data show that exposure to context produces robust Fos induction in the hippocampus and amygdala, regardless of prior experience with restraint and compared to the immediate experience of restraint, with prior experience modulating Fos expression within the mPFC.


Assuntos
Tonsila do Cerebelo/metabolismo , Região CA1 Hipocampal/metabolismo , Região CA3 Hipocampal/metabolismo , Giro Denteado/metabolismo , Córtex Pré-Frontal/metabolismo , Proteínas Proto-Oncogênicas c-fos/biossíntese , Animais , Genes Precoces/fisiologia , Imuno-Histoquímica , Masculino , Ratos , Restrição Física , Estresse Fisiológico , Estresse Psicológico
7.
J Neurotrauma ; 29(10): 1898-907, 2012 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-22416854

RESUMO

The aim of this study was to evaluate the potential efficacy of the serotonin(1A) (5-HT(1A)) receptor agonist buspirone (BUS) on behavioral and histological outcome after traumatic brain injury (TBI). Ninety-six isoflurane-anesthetized adult male rats were randomized to receive either a controlled cortical impact or sham injury, and then assigned to six TBI and six sham groups receiving one of five doses of BUS (0.01, 0.05, 0.1, 0.3, or 0.5 mg/kg) or saline vehicle (VEH, 1.0 mL/kg). Treatments began 24 h after surgery and were administered intraperitoneally once daily for 3 weeks. Motor function (beam-balance/beam-walk tests) and spatial learning/memory (Morris water maze) were assessed on post-operative days 1-5 and 14-19, respectively. Morphologically intact CA1/CA3 cells and cortical lesion volume were quantified at 3 weeks. No differences were observed among the BUS and VEH sham groups in any end-point measure and thus the data were pooled. Regarding the TBI groups, repeated-measures ANOVAs revealed that the 0.3 mg/kg dose of BUS enhanced cognitive performance relative to VEH and the other BUS doses (p<0.05), but did not significantly impact motor function. Moreover, the same dose conferred selective histological protection as evidenced by smaller cortical lesions, but not greater CA1/CA3 cell survival. No significant behavioral or histological differences were observed among the other BUS doses versus VEH. These data indicate that BUS has a narrow therapeutic dose response, and that 0.3 mg/kg is optimal for enhancing spatial learning and memory in this model of TBI. BUS may have potential as a novel pharmacotherapy for clinical TBI.


Assuntos
Lesões Encefálicas/tratamento farmacológico , Buspirona/farmacologia , Transtornos Cognitivos/tratamento farmacológico , Agonistas do Receptor 5-HT1 de Serotonina/farmacologia , Animais , Lesões Encefálicas/patologia , Lesões Encefálicas/fisiopatologia , Buspirona/uso terapêutico , Doença Crônica , Transtornos Cognitivos/patologia , Transtornos Cognitivos/fisiopatologia , Modelos Animais de Doenças , Esquema de Medicação , Injeções Intraperitoneais , Masculino , Ratos , Ratos Sprague-Dawley , Agonistas do Receptor 5-HT1 de Serotonina/uso terapêutico
8.
Neurobiol Learn Mem ; 94(3): 422-33, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20807583

RESUMO

Chronic stress and estrogens alter many forebrain regions in female rats that affect cognition. In order to investigate how chronic stress and estrogens influence fear learning and memory, we ovariectomized (OVX) female Sprague-Dawley rats and repeatedly injected them (s.c.) with 17ß-estradiol (E, 10 µg/250 g or sesame oil vehicle, VEH). Concurrently, rats were restrained for 6 h/d/21 d (STR) or left undisturbed (CON). Rats were then fear conditioned with 4 tone-footshock pairings and then after 1 h and 24 h delays, given 15 tone extinction trials. Regardless of E treatment, chronic stress (VEH, E) facilitated freezing to tone during acquisition and extinction following a 1h delay, but not during extinction after a 24 h delay. E did not influence freezing to tone during any phase of fear conditioning for either the control or chronically stressed rats, but did influence contextual conditioning that may have been carried predominately by the STR group. In the second experiment, we investigated "handling" influences on fear conditioning acquisition, given the disparate findings from the current study and previous work (Baran, Armstrong, Niren, & Conrad, 2010; Baran, Armstrong, Niren, Hanna, & Conrad, 2009). Female rats remained gonadally-intact since E did not influence tone fear conditioning. Indeed, brief daily handling (1-3 m/d/21 d) facilitated acquisition of fear conditioning in chronically stressed female rats, and either had no effect or slightly attenuated fear conditioning in controls. Thus, chronic stress impacts amygdala-mediated fear learning in both OVX- and gonadally-intact females as found previously in males, with handling significantly influencing these outcomes.


Assuntos
Aprendizagem por Associação/fisiologia , Condicionamento Clássico/fisiologia , Estradiol/administração & dosagem , Medo/fisiologia , Reação de Congelamento Cataléptica/fisiologia , Estresse Fisiológico/fisiologia , Análise de Variância , Animais , Aprendizagem por Associação/efeitos dos fármacos , Condicionamento Clássico/efeitos dos fármacos , Eletrochoque , Extinção Psicológica/efeitos dos fármacos , Extinção Psicológica/fisiologia , Medo/efeitos dos fármacos , Feminino , Reação de Congelamento Cataléptica/efeitos dos fármacos , Ovariectomia , Ratos , Ratos Sprague-Dawley , Restrição Física
9.
Neurosci Lett ; 448(3): 263-7, 2008 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-18983891

RESUMO

Antipsychotics are often administered to traumatic brain injured (TBI) patients as a means of controlling agitation, albeit the rehabilitative consequences of this intervention are not well known. Hence, the goal of this study was to evaluate the effects of risperidone (RISP) and haloperidol (HAL) on behavioral outcome after experimental TBI. Anesthetized rats received either a cortical impact or sham injury and then were randomly assigned to five TBI (RISP 0.045mg/kg, RISP 0.45mg/kg, RISP 4.5mg/kg, HAL 0.5mg/kg and VEHicle 1mL/kg) and three Sham (RISP 4.5mg/kg, HAL 0.5mg/kg and VEH 1mL/kg) groups. Treatments began 24h after surgery and were provided once daily for 19 days. Behavior was assessed with established motor (beam-balance/walk) and cognitive (spatial learning/memory in a water maze) tasks on post-operative days 1-5 and 14-19, respectively. RISP and HAL delayed motor recovery, impaired the acquisition of spatial learning, and slowed swim speed relative to VEH in both TBI and sham groups. These data indicate that chronic administration of RISP and HAL impede behavioral recovery after TBI and impair performance in uninjured controls.


Assuntos
Antipsicóticos/toxicidade , Comportamento Animal/efeitos dos fármacos , Lesões Encefálicas/psicologia , Recuperação de Função Fisiológica/efeitos dos fármacos , Agressão/efeitos dos fármacos , Análise de Variância , Animais , Haloperidol/farmacologia , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Memória/efeitos dos fármacos , Equilíbrio Postural/efeitos dos fármacos , Agitação Psicomotora/psicologia , Ratos , Ratos Sprague-Dawley , Risperidona/farmacologia , Percepção Espacial/efeitos dos fármacos , Natação/fisiologia
10.
Life Sci ; 83(17-18): 602-7, 2008 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-18801378

RESUMO

AIMS: Agitation and aggression are common behavioral sequelae of traumatic brain injury (TBI). The management of these symptoms is critical for effective patient care and therefore antipsychotics are routinely administered even though the benefits vs. risks of this approach on functional outcome after TBI are unclear. A recent study from our group revealed that both haloperidol and risperidone impaired recovery when administered prior to testing. However, the results may have been confounded by drug-induced sedation. Hence, the current study reevaluated the behavioral effects of haloperidol and risperidone when provided after daily testing, thus circumventing the potential sedative effect. MAIN METHODS: Fifty-four isoflurane-anesthetized male rats received a cortical impact or sham injury and then were randomly assigned to three TBI and three sham groups that received haloperidol (0.5 mg/kg), risperidone (0.45 mg/kg), or vehicle (1.0 mL/kg). Treatments began 24 h after surgery and were administered (i.p.) every day thereafter for 19 days. Motor and cognitive function was assessed on post-operative days 1-5 and 14-19, respectively. Hippocampal CA(1)/CA(3) neurons and cortical lesion volume were quantified at 3 weeks. KEY FINDINGS: Only risperidone delayed motor recovery, but both antipsychotics impaired spatial learning relative to vehicle (p<0.05). Neither swim speed nor histological outcomes were affected. No differences were observed between the haloperidol and risperidone groups in any task. SIGNIFICANCE: These data support our previous finding that chronic haloperidol and risperidone hinder the recovery of TBI-induced deficits, and augment those data by demonstrating that the effects are not mediated by drug-induced sedation.


Assuntos
Antipsicóticos/farmacologia , Lesões Encefálicas/psicologia , Cognição/efeitos dos fármacos , Haloperidol/farmacologia , Atividade Motora/efeitos dos fármacos , Risperidona/farmacologia , Animais , Encéfalo/patologia , Lesões Encefálicas/patologia , Lesões Encefálicas/fisiopatologia , Masculino , Testes Neuropsicológicos , Ratos , Ratos Sprague-Dawley
11.
Neurosci Lett ; 431(3): 226-30, 2008 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-18162321

RESUMO

Environmental enrichment (EE) is superior to standard (STD) housing in promoting functional recovery after traumatic brain injury (TBI). However, whether the EE-mediated benefits after TBI are dependent on exposure to enrichment during neurobehavioral training has not been elucidated. To address this issue, isoflurane-anesthetized adult male rats received either a cortical impact or sham injury and were then randomly assigned to early EE, delayed EE, continuous EE or no EE (i.e., STD conditions). Continuous EE or no EE was initiated immediately after surgery and continued for the duration of the study. Early EE began directly after surgery, continued for 1 week, and was then followed by STD living (2 rats per cage) for the remainder of the study, while delayed EE commenced 1 week after early STD housing. Functional outcome was assessed with established motor and cognitive tests on post-injury days 1-5 and 14-18, respectively. CA(1)/CA(3) neurons were quantified at 3 weeks. CA(3) cell loss was significantly attenuated in the TBI+continuous EE group versus the TBI+no EE group. Beam-walking was facilitated in the TBI groups that received either early or continuous EE versus those receiving delayed or no EE. Cognitive training was enhanced in the TBI groups that received continuous or delayed EE versus the early EE or no EE groups. These data suggest that EE-mediated functional improvement after TBI is contingent on task-specific neurobehavioral experience.


Assuntos
Lesões Encefálicas/fisiopatologia , Lesões Encefálicas/reabilitação , Meio Ambiente , Aprendizagem em Labirinto/fisiologia , Desempenho Psicomotor/fisiologia , Recuperação de Função Fisiológica/fisiologia , Animais , Comportamento Animal , Modelos Animais de Doenças , Masculino , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Tempo de Reação/fisiologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA