Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
JCI Insight ; 2(17)2017 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-28878116

RESUMO

Cardiomyopathy frequently complicates sepsis and is associated with increased mortality. Increased cardiac oxidative stress and mitochondrial dysfunction have been observed during sepsis, but the mechanisms responsible for these abnormalities have not been determined. We hypothesized that NADPH oxidase 2 (NOX2) activation could be responsible for sepsis-induced oxidative stress and cardiomyopathy. Treatment of isolated adult mouse cardiomyocytes with low concentrations of the endotoxin lipopolysaccharide (LPS) increased total cellular reactive oxygen species (ROS) and mitochondrial superoxide. Elevated mitochondrial superoxide was accompanied by depolarization of the mitochondrial inner membrane potential, an indication of mitochondrial dysfunction, and mitochondrial calcium overload. NOX2 inhibition decreased LPS-induced superoxide and prevented mitochondrial dysfunction. Further, cardiomyocytes from mice with genetic ablation of NOX2 did not have LPS-induced superoxide or mitochondrial dysfunction. LPS decreased contractility and calcium transient amplitude in isolated cardiomyocytes, and these abnormalities were prevented by inhibition of NOX2. LPS decreased systolic function in mice, measured by echocardiography. NOX2 inhibition was cardioprotective in 2 mouse models of sepsis, preserving systolic function after LPS injection or cecal ligation and puncture (CLP). These data show that inhibition of NOX2 decreases oxidative stress, preserves intracellular calcium handling and mitochondrial function, and alleviates sepsis-induced systolic dysfunction in vivo. Thus, NOX2 is a potential target for pharmacotherapy of sepsis-induced cardiomyopathy.


Assuntos
Cálcio/metabolismo , Cardiomiopatias/prevenção & controle , Mitocôndrias Cardíacas/metabolismo , NADPH Oxidase 2/antagonistas & inibidores , Sepse/complicações , Animais , Cardiomiopatias/diagnóstico por imagem , Cardiomiopatias/etiologia , Modelos Animais de Doenças , Ecocardiografia , Lipopolissacarídeos/farmacologia , Potencial da Membrana Mitocondrial , Camundongos , Camundongos Knockout , Miócitos Cardíacos/metabolismo , NADPH Oxidase 2/genética , Fosforilação Oxidativa , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
2.
Blood ; 130(5): 567-580, 2017 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-28500171

RESUMO

Platelet-derived microparticles (PMPs) are associated with enhancement of metastasis and poor cancer outcomes. Circulating PMPs transfer platelet microRNAs (miRNAs) to vascular cells. Solid tumor vasculature is highly permeable, allowing the possibility of PMP-tumor cell interaction. Here, we show that PMPs infiltrate solid tumors in humans and mice and transfer platelet-derived RNA, including miRNAs, to tumor cells in vivo and in vitro, resulting in tumor cell apoptosis. MiR-24 was a major species in this transfer. PMP transfusion inhibited growth of both lung and colon carcinoma ectopic tumors, whereas blockade of miR-24 in tumor cells accelerated tumor growth in vivo, and prevented tumor growth inhibition by PMPs. Conversely, Par4-deleted mice, which had reduced circulating microparticles (MPs), supported accelerated tumor growth which was halted by PMP transfusion. PMP targeting was associated with tumor cell apoptosis in vivo. We identified direct RNA targets of platelet-derived miR-24 in tumor cells, which included mitochondrial mt-Nd2, and Snora75, a noncoding small nucleolar RNA. These RNAs were suppressed in PMP-treated tumor cells, resulting in mitochondrial dysfunction and growth inhibition, in an miR-24-dependent manner. Thus, platelet-derived miRNAs transfer in vivo to tumor cells in solid tumors via infiltrating MPs, regulate tumor cell gene expression, and modulate tumor progression. These findings provide novel insight into mechanisms of horizontal RNA transfer and add multiple layers to the regulatory roles of miRNAs and PMPs in tumor progression. Plasma MP-mediated transfer of regulatory RNAs and modulation of gene expression may be a common feature with important outcomes in contexts of enhanced vascular permeability.


Assuntos
Plaquetas/metabolismo , Micropartículas Derivadas de Células/metabolismo , Neoplasias do Colo/metabolismo , Neoplasias Pulmonares/metabolismo , MicroRNAs/metabolismo , Animais , Micropartículas Derivadas de Células/transplante , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Neoplasias do Colo/terapia , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/terapia , Camundongos , NADH Desidrogenase/genética , NADH Desidrogenase/metabolismo , Metástase Neoplásica , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Receptores Ativados por Proteinase
3.
Cell Rep ; 15(8): 1673-85, 2016 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-27184846

RESUMO

Mitochondrial Ca(2+) Uniporter (MCU)-dependent mitochondrial Ca(2+) uptake is the primary mechanism for increasing matrix Ca(2+) in most cell types. However, a limited understanding of the MCU complex assembly impedes the comprehension of the precise mechanisms underlying MCU activity. Here, we report that mouse cardiomyocytes and endothelial cells lacking MCU regulator 1 (MCUR1) have severely impaired [Ca(2+)]m uptake and IMCU current. MCUR1 binds to MCU and EMRE and function as a scaffold factor. Our protein binding analyses identified the minimal, highly conserved regions of coiled-coil domain of both MCU and MCUR1 that are necessary for heterooligomeric complex formation. Loss of MCUR1 perturbed MCU heterooligomeric complex and functions as a scaffold factor for the assembly of MCU complex. Vascular endothelial deletion of MCU and MCUR1 impaired mitochondrial bioenergetics, cell proliferation, and migration but elicited autophagy. These studies establish the existence of a MCU complex that assembles at the mitochondrial integral membrane and regulates Ca(2+)-dependent mitochondrial metabolism.


Assuntos
Canais de Cálcio/metabolismo , Metabolismo Energético , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Animais , Autofagia , Cálcio/metabolismo , Canais de Cálcio/química , Movimento Celular , Células Endoteliais/metabolismo , Deleção de Genes , Células HEK293 , Células HeLa , Coração/fisiologia , Humanos , Camundongos Knockout , Proteínas Mitocondriais/química , Neovascularização Fisiológica , Ligação Proteica , Domínios Proteicos
4.
J Mol Cell Cardiol ; 92: 10-20, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26796036

RESUMO

Bcl2-associated athanogene 3 (BAG3) is a 575 amino acid anti-apoptotic protein that is constitutively expressed in the heart. BAG3 mutations, including mutations leading to loss of protein, are associated with familial cardiomyopathy. Furthermore, BAG3 levels have been found to be reduced in end-stage non-familial failing myocardium. In contrast to neonatal myocytes in which BAG3 is found in the cytoplasm and involved in protein quality control and apoptosis, in adult mouse left ventricular (LV) myocytes BAG3 co-localized with Na(+)-K(+)-ATPase and L-type Ca(2+) channels in the sarcolemma and t-tubules. BAG3 co-immunoprecipitated with ß1-adrenergic receptor, L-type Ca(2+) channels and phospholemman. To simulate decreased BAG3 protein levels observed in human heart failure, we targeted BAG3 by shRNA (shBAG3) in adult LV myocytes. Reducing BAG3 by 55% resulted in reduced contraction and [Ca(2+)]i transient amplitudes in LV myocytes stimulated with isoproterenol. L-type Ca(2+) current (ICa) and sarcoplasmic reticulum (SR) Ca(2+) content but not Na(+)/Ca(2+) exchange current (INaCa) or SR Ca(2+) uptake were reduced in isoproterenol-treated shBAG3 myocytes. Forskolin or dibutyryl cAMP restored ICa amplitude in shBAG3 myocytes to that observed in WT myocytes, consistent with BAG3 having effects upstream and at the level of the receptor. Resting membrane potential and action potential amplitude were unaffected but APD50 and APD90 were prolonged in shBAG3 myocytes. Protein levels of Ca(2+) entry molecules and other important excitation-contraction proteins were unchanged in myocytes with lower BAG3. Our findings that BAG3 is localized at the sarcolemma and t-tubules while modulating myocyte contraction and action potential duration through specific interaction with the ß1-adrenergic receptor and L-type Ca(2+) channel provide novel insight into the role of BAG3 in cardiomyopathies and increased arrhythmia risks in heart failure.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Reguladoras de Apoptose/genética , Canais de Cálcio Tipo L/metabolismo , Cardiomiopatia Dilatada/metabolismo , Insuficiência Cardíaca/metabolismo , Receptores Adrenérgicos beta 1/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Potenciais de Ação/efeitos dos fármacos , Proteínas Adaptadoras de Transdução de Sinal/biossíntese , Animais , Proteínas Reguladoras de Apoptose/biossíntese , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/patologia , Cálcio/metabolismo , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/patologia , Acoplamento Excitação-Contração , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , Ventrículos do Coração/metabolismo , Ventrículos do Coração/patologia , Homeostase , Humanos , Isoproterenol/administração & dosagem , Proteínas de Membrana/metabolismo , Camundongos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Fosfoproteínas/metabolismo , RNA Interferente Pequeno/genética , Sarcolema/metabolismo
5.
J Am Coll Cardiol ; 66(2): 139-53, 2015 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-26160630

RESUMO

BACKGROUND: Vascular endothelial growth factor (VEGF)-B activates cytoprotective/antiapoptotic and minimally angiogenic mechanisms via VEGF receptors. Therefore, VEGF-B might be an ideal candidate for the treatment of dilated cardiomyopathy, which displays modest microvascular rarefaction and increased rate of apoptosis. OBJECTIVES: This study evaluated VEGF-B gene therapy in a canine model of tachypacing-induced dilated cardiomyopathy. METHODS: Chronically instrumented dogs underwent cardiac tachypacing for 28 days. Adeno-associated virus serotype 9 viral vectors carrying VEGF-B167 genes were infused intracoronarily at the beginning of the pacing protocol or during compensated heart failure. Moreover, we tested a novel VEGF-B167 transgene controlled by the atrial natriuretic factor promoter. RESULTS: Compared with control subjects, VEGF-B167 markedly preserved diastolic and contractile function and attenuated ventricular chamber remodeling, halting the progression from compensated to decompensated heart failure. Atrial natriuretic factor-VEGF-B167 expression was low in normally functioning hearts and stimulated by cardiac pacing; it thus functioned as an ideal therapeutic transgene, active only under pathological conditions. CONCLUSIONS: Our results, obtained with a standard technique of interventional cardiology in a clinically relevant animal model, support VEGF-B167 gene transfer as an affordable and effective new therapy for nonischemic heart failure.


Assuntos
Cardiomiopatia Dilatada/terapia , Terapia Genética/métodos , Fator B de Crescimento do Endotélio Vascular/genética , Animais , Vasos Coronários , Modelos Animais de Doenças , Cães , Infusões Intra-Arteriais , Masculino , Transgenes , Pesquisa Translacional Biomédica , Resultado do Tratamento
6.
Sci Signal ; 8(366): ra23, 2015 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-25737585

RESUMO

Cytosolic Ca2+ signals, generated through the coordinated translocation of Ca2+ across the plasma membrane (PM) and endoplasmic reticulum (ER) membrane, mediate diverse cellular responses. Mitochondrial Ca2+ is important for mitochondrial function, and when cytosolic Ca2+ concentration becomes too high, mitochondria function as cellular Ca2+ sinks. By measuring mitochondrial Ca2+ currents, we found that mitochondrial Ca2+ uptake was reduced in chicken DT40 B lymphocytes lacking either the ER-localized inositol trisphosphate receptor (IP3R), which releases Ca2+ from the ER, or Orai1 or STIM1, components of the PM-localized Ca2+ -permeable channel complex that mediates store-operated calcium entry (SOCE) in response to depletion of ER Ca2+ stores. The abundance of MCU, the pore-forming subunit of the mitochondrial Ca2+ uniporter, was reduced in cells deficient in IP3R, STIM1, or Orai1. Chromatin immunoprecipitation and promoter reporter analyses revealed that the Ca2+ -regulated transcription factor CREB (cyclic adenosine monophosphate response element-binding protein) directly bound the MCU promoter and stimulated expression. Lymphocytes deficient in IP3R, STIM1, or Orai1 exhibited altered mitochondrial metabolism, indicating that Ca2+ released from the ER and SOCE-mediated signals modulates mitochondrial function. Thus, our results showed that a transcriptional regulatory circuit involving Ca2+ -dependent activation of CREB controls the Ca2+ uptake capability of mitochondria and hence regulates mitochondrial metabolism.


Assuntos
Proteínas Aviárias/metabolismo , Canais de Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas Mitocondriais/metabolismo , Animais , Proteínas Aviárias/genética , Canais de Cálcio/genética , Linhagem Celular , Galinhas , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Retículo Endoplasmático , Camundongos , Camundongos Knockout , Proteínas Mitocondriais/genética , Proteína ORAI1 , Molécula 1 de Interação Estromal
7.
Am J Physiol Heart Circ Physiol ; 308(6): H637-50, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25576627

RESUMO

Ubiquitously expressed Trpm2 channel limits oxidative stress and preserves mitochondrial function. We first demonstrated that intracellular Ca(2+) concentration increase after Trpm2 activation was due to direct Ca(2+) influx and not indirectly via reverse Na(+)/Ca(2+) exchange. To elucidate whether Ca(2+) entry via Trpm2 is required to maintain cellular bioenergetics, we injected adenovirus expressing green fluorescent protein (GFP), wild-type (WT) Trpm2, and loss-of-function (E960D) Trpm2 mutant into left ventricles of global Trpm2 knockout (gKO) or WT hearts. Five days post-injection, gKO-GFP heart slices had higher reactive oxygen species (ROS) levels but lower oxygen consumption rate (OCR) than WT-GFP heart slices. Trpm2 but not E960D decreased ROS and restored OCR in gKO hearts back to normal levels. In gKO myocytes expressing Trpm2 or its mutants, Trpm2 but not E960D reduced the elevated mitochondrial superoxide (O2(.-)) levels in gKO myocytes. After hypoxia-reoxygenation (H/R), Trpm2 but not E906D or P1018L (inactivates Trpm2 current) lowered O2(.-) levels in gKO myocytes and only in the presence of extracellular Ca(2+), indicating sustained Ca(2+) entry is necessary for Trpm2-mediated preservation of mitochondrial function. After ischemic-reperfusion (I/R), cardiac-specific Trpm2 KO hearts exhibited lower maximal first time derivative of LV pressure rise (+dP/dt) than WT hearts in vivo. After doxorubicin treatment, Trpm2 KO mice had worse survival and lower +dP/dt. We conclude 1) cardiac Trpm2-mediated Ca(2+) influx is necessary to maintain mitochondrial function and protect against H/R injury; 2) Ca(2+) influx via cardiac Trpm2 confers protection against H/R and I/R injury by reducing mitochondrial oxidants; and 3) Trpm2 confers protection in doxorubicin cardiomyopathy.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Cardiomiopatias/prevenção & controle , Metabolismo Energético , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/metabolismo , Canais de Cátion TRPM/metabolismo , Potenciais de Ação , Animais , Cardiomiopatias/induzido quimicamente , Cardiomiopatias/genética , Cardiomiopatias/metabolismo , Cardiomiopatias/fisiopatologia , Modelos Animais de Doenças , Doxorrubicina , Células HEK293 , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias Cardíacas/metabolismo , Mutação , Contração Miocárdica , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Estresse Oxidativo , Consumo de Oxigênio , Espécies Reativas de Oxigênio/metabolismo , Canais de Cátion TRPM/deficiência , Canais de Cátion TRPM/genética , Fatores de Tempo , Transfecção , Função Ventricular Esquerda , Pressão Ventricular
8.
J Neurochem ; 133(3): 432-9, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25533523

RESUMO

A major hallmark feature of Alzheimer's disease is the accumulation of amyloid ß (Aß), whose formation is regulated by the γ-secretase complex and its activating protein (also known as γ-secretase activating protein, or GSAP). Because GSAP interacts with the γ-secretase without affecting the cleavage of Notch, it is an ideal target for a viable anti-Aß therapy. GSAP derives from a C-terminal fragment of a larger precursor protein of 98 kDa via a caspase 3-mediated cleavage. However, the mechanism(s) involved in its degradation remain unknown. In this study, we show that GSAP has a short half-life of approximately 5 h. Neuronal cells treated with proteasome inhibitors markedly prevented GSAP protein degradation, which was associated with a significant increment in Aß levels and γ-secretase cleavage products. In contrast, treatment with calpain blocker and lysosome inhibitors had no effect. In addition, we provide experimental evidence that GSAP is ubiquitinated. Taken together, our findings reveal that GSAP is degraded through the ubiquitin-proteasome system. Modulation of the GSAP degradation pathway may be implemented as a viable target for a safer anti-Aß therapeutic approach in Alzheimer's disease. The GSAP derives from a precursor via a caspase 3-mediated cleavage, is up-regulated in Alzheimer's disease brains and facilitates Aß production by interacting directly with the γ-secretase complex. Here, we demonstrate that GSAP is ubiquitinated and then selectively degraded via the proteasome system but not the calpains or lysosome pathways. These findings provide further evidence for the involvement of the proteasome system in the regulation of amyloid beta (Aß) precursor protein metabolism and Aß formation. AICD, APP intracellular domain; APP, amyloid precursor protein; ATP, adenosine triphosphate; CTF-α, alpha-C-terminal fragment; CTF-ß, beta-C-terminal fragment; GSAP, γ-secretase activating protein; Ub, ubiquitin.


Assuntos
Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas/metabolismo , Transdução de Sinais/fisiologia , Ubiquitina/metabolismo , Linhagem Celular Tumoral , Humanos
9.
Biol Psychiatry ; 77(8): 720-8, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25052851

RESUMO

BACKGROUND: A major feature of Alzheimer's disease (AD) is the accumulation of amyloid-beta (Aß), whose formation is regulated by the gamma-secretase complex and its activating protein (also known as GSAP). Because GSAP interacts with gamma-secretase without affecting the cleavage of Notch, it is an ideal target for a viable anti-Aß therapy. However, despite much interest in this protein, the mechanisms involved in its neurobiology are unknown. METHODS: Postmortem brain tissue samples from AD patients, transgenic mouse models of AD, and neuronal cells were used to investigate the molecular mechanism involved in GSAP formation and subsequent amyloidogenesis. RESULTS: We identified a caspase-3 processing domain in the GSAP sequence and provide experimental evidence that this caspase is essential for GSAP activation and biogenesis of Aß peptides. Furthermore, we demonstrated that caspase-3-dependent GSAP formation occurs in brains of individuals with AD and two different mouse models of AD and that the process is biologically relevant because its pharmacological blockade reduces Aß pathology in vivo. CONCLUSIONS: Our data, by identifying caspase-3 as the endogenous modulator of GSAP and Aß production, establish caspase-3 as a novel, attractive and viable Aß-lowering therapeutic target for AD.


Assuntos
Doença de Alzheimer/patologia , Caspase 3/metabolismo , Lobo Frontal/metabolismo , Proteínas/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Caspase 3/genética , Linhagem Celular Tumoral , Feminino , Regulação da Expressão Gênica/genética , Humanos , Imunoprecipitação , Masculino , Camundongos , Camundongos Transgênicos , Mutagênese , Mutação , Neuroblastoma/patologia , Presenilina-1/genética , Presenilina-1/metabolismo , Proteínas/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transfecção
10.
J Biol Chem ; 289(52): 36284-302, 2014 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-25391657

RESUMO

The calcium-permeable ion channel TRPM2 is highly expressed in a number of cancers. In neuroblastoma, full-length TRPM2 (TRPM2-L) protected cells from moderate oxidative stress through increased levels of forkhead box transcription factor 3a (FOXO3a) and superoxide dismutase 2. Cells expressing the dominant negative short isoform (TRPM2-S) had reduced FOXO3a and superoxide dismutase 2 levels, reduced calcium influx in response to oxidative stress, and enhanced reactive oxygen species, leading to decreased cell viability. Here, in xenografts generated with SH-SY5Y neuroblastoma cells stably expressing TRPM2 isoforms, growth of tumors expressing TRPM2-S was significantly reduced compared with tumors expressing TRPM2-L. Expression of hypoxia-inducible factor (HIF)-1/2α was significantly reduced in TRPM2-S-expressing tumor cells as was expression of target proteins regulated by HIF-1/2α including those involved in glycolysis (lactate dehydrogenase A and enolase 2), oxidant stress (FOXO3a), angiogenesis (VEGF), mitophagy and mitochondrial function (BNIP3 and NDUFA4L2), and mitochondrial electron transport chain activity (cytochrome oxidase 4.1/4.2 in complex IV). The reduction in HIF-1/2α was mediated through both significantly reduced HIF-1/2α mRNA levels and increased levels of von Hippel-Lindau E3 ligase in TRPM2-S-expressing cells. Inhibition of TRPM2-L by pretreatment with clotrimazole or expression of TRPM2-S significantly increased sensitivity of cells to doxorubicin. Reduced survival of TRPM2-S-expressing cells after doxorubicin treatment was rescued by gain of HIF-1 or -2α function. These data suggest that TRPM2 activity is important for tumor growth and for cell viability and survival following doxorubicin treatment and that interference with TRPM2-L function may be a novel approach to reduce tumor growth through modulation of HIF-1/2α, mitochondrial function, and mitophagy.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neuroblastoma/metabolismo , Canais de Cátion TRPM/fisiologia , Glândulas Suprarrenais/metabolismo , Animais , Antibióticos Antineoplásicos/farmacologia , Autofagia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular/efeitos dos fármacos , Regulação para Baixo , Doxorrubicina/farmacologia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Potencial da Membrana Mitocondrial , Potenciais da Membrana , Camundongos Nus , Transplante de Neoplasias , Neuroblastoma/patologia , Isoformas de Proteínas/fisiologia , Transporte Proteico , Carga Tumoral
11.
Circ Res ; 115(6): 567-580, 2014 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-25047165

RESUMO

RATIONALE: The cellular and molecular basis for post-myocardial infarction (MI) structural and functional remodeling is not well understood. OBJECTIVE: Our aim was to determine if Ca2+ influx through transient receptor potential canonical (TRPC) channels contributes to post-MI structural and functional remodeling. METHODS AND RESULTS: TRPC1/3/4/6 channel mRNA increased after MI in mice and was associated with TRPC-mediated Ca2+ entry. Cardiac myocyte-specific expression of a dominant-negative (loss-of-function) TRPC4 channel increased basal myocyte contractility and reduced hypertrophy and cardiac structural and functional remodeling after MI while increasing survival in mice. We used adenovirus-mediated expression of TRPC3/4/6 channels in cultured adult feline myocytes to define mechanistic aspects of these TRPC-related effects. TRPC3/4/6 overexpression in adult feline myocytes induced calcineurin (Cn)-nuclear factor of activated T-cells (NFAT)-mediated hypertrophic signaling, which was reliant on caveolae targeting of TRPCs. TRPC3/4/6 expression in adult feline myocytes increased rested state contractions and increased spontaneous sarcoplasmic reticulum Ca2+ sparks mediated by enhanced phosphorylation of the ryanodine receptor. TRPC3/4/6 expression was associated with reduced contractility and response to catecholamines during steady-state pacing, likely because of enhanced sarcoplasmic reticulum Ca2+ leak. CONCLUSIONS: Ca2+ influx through TRPC channels expressed after MI activates pathological cardiac hypertrophy and reduces contractility reserve. Blocking post-MI TRPC activity improved post-MI cardiac structure and function.


Assuntos
Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miócitos Cardíacos/patologia , Canais de Potencial de Receptor Transitório/fisiologia , Remodelação Ventricular/fisiologia , Animais , Cálcio/metabolismo , Cardiomegalia/patologia , Cardiomegalia/fisiopatologia , Gatos , Células Cultivadas , Modelos Animais de Doenças , Acoplamento Excitação-Contração/fisiologia , Camundongos , Contração Miocárdica/fisiologia , Retículo Sarcoplasmático/metabolismo
12.
J Biol Chem ; 289(11): 7615-29, 2014 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-24492610

RESUMO

Cardiac TRPM2 channels were activated by intracellular adenosine diphosphate-ribose and blocked by flufenamic acid. In adult cardiac myocytes the ratio of GCa to GNa of TRPM2 channels was 0.56 ± 0.02. To explore the cellular mechanisms by which TRPM2 channels protect against cardiac ischemia/reperfusion (I/R) injury, we analyzed proteomes from WT and TRPM2 KO hearts subjected to I/R. The canonical pathways that exhibited the largest difference between WT-I/R and KO-I/R hearts were mitochondrial dysfunction and the tricarboxylic acid cycle. Complexes I, III, and IV were down-regulated, whereas complexes II and V were up-regulated in KO-I/R compared with WT-I/R hearts. Western blots confirmed reduced expression of the Complex I subunit and other mitochondria-associated proteins in KO-I/R hearts. Bioenergetic analyses revealed that KO myocytes had a lower mitochondrial membrane potential, mitochondrial Ca(2+) uptake, ATP levels, and O2 consumption but higher mitochondrial superoxide levels. Additionally, mitochondrial Ca(2+) uniporter (MCU) currents were lower in KO myocytes, indicating reduced mitochondrial Ca(2+) uptake was likely due to both lower ψm and MCU activity. Similar to isolated myocytes, O2 consumption and ATP levels were also reduced in KO hearts. Under a simulated I/R model, aberrant mitochondrial bioenergetics was exacerbated in KO myocytes. Reactive oxygen species levels were also significantly higher in KO-I/R compared with WT-I/R heart slices, consistent with mitochondrial dysfunction in KO-I/R hearts. We conclude that TRPM2 channels protect the heart from I/R injury by ameliorating mitochondrial dysfunction and reducing reactive oxygen species levels.


Assuntos
Mitocôndrias/metabolismo , Traumatismo por Reperfusão/patologia , Canais de Cátion TRPM/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Cálcio/metabolismo , Transporte de Elétrons , Eletrofisiologia , Células HEK293 , Coração/fisiopatologia , Ventrículos do Coração/metabolismo , Humanos , Masculino , Potenciais da Membrana , Camundongos , Camundongos Knockout , Células Musculares/citologia , Isquemia Miocárdica/patologia , Oxigênio/química , Consumo de Oxigênio , Proteômica , Espécies Reativas de Oxigênio/metabolismo
13.
Am J Physiol Cell Physiol ; 306(8): C736-44, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24401846

RESUMO

The existence of a local renin-angiotensin system (RAS) in neurons was first postulated 40 years ago. Further studies indicated intraneuronal generation of ANG II. However, the function and signaling mechanisms of intraneuronal ANG II remained elusive. Since ANG II type 1 receptor (AT1R) is the major type of receptor mediating the effects of ANG II, we used intracellular microinjection and concurrent Ca(2+) and voltage imaging to examine the functionality of intracellular AT1R in neurons. We show that intracellular administration of ANG II produces a dose-dependent elevation of cytosolic Ca(2+) concentration ([Ca(2+)]i) in hypothalamic neurons that is sensitive to AT1R antagonism. Endolysosomal, but not Golgi apparatus, disruption prevents the effect of microinjected ANG II on [Ca(2+)]i. Additionally, the ANG II-induced Ca(2+) response is dependent on microautophagy and sensitive to inhibition of PLC or antagonism of inositol 1,4,5-trisphosphate receptors. Furthermore, intracellular application of ANG II produces AT1R-mediated depolarization of hypothalamic neurons, which is dependent on [Ca(2+)]i increase and on cation influx via transient receptor potential canonical channels. In summary, we provide evidence that intracellular ANG II activates endolysosomal AT1Rs in hypothalamic neurons. Our results point to the functionality of a novel intraneuronal angiotensinergic pathway, extending the current understanding of intracrine ANG II signaling.


Assuntos
Angiotensina II/metabolismo , Neurônios/fisiologia , Transdução de Sinais/fisiologia , Angiotensina II/administração & dosagem , Angiotensina II/farmacologia , Bloqueadores do Receptor Tipo 1 de Angiotensina II/administração & dosagem , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Animais , Animais Recém-Nascidos , Cálcio/metabolismo , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Feminino , Regulação da Expressão Gênica , Humanos , Hipotálamo/citologia , Inositol 1,4,5-Trifosfato/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/genética , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Masculino , Microinjeções , Neurônios/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Receptor Tipo 1 de Angiotensina/efeitos dos fármacos , Receptor Tipo 1 de Angiotensina/metabolismo
14.
Mol Pharm ; 11(2): 545-59, 2014 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-24377350

RESUMO

The study presents the effects of blending a cationic gemini surfactant into cationic lipid bilayers and its impact on the plasmid DNA compaction and delivery process. Using nanoDSC, dynamic light scattering, zeta potential, and electrophoretic mobility measurements, together with transfection (2D- and 3D-) and viability assays, we identified the main physicochemical parameters of the lipid bilayers, liposomes, and lipoplexes that are affected by the gemini surfactant addition. We also correlated the cationic bilayer composition with the dynamics of the DNA compaction process and with transfection efficiency, cytotoxicity, and the internalization mechanism of the resultant nucleic acid complexes. We found that the blending of gemini surfactant into the cationic bilayers fluidized the supramolecular assemblies, reduced the amount of positive charge required to fully compact the plasmid DNA and, in certain cases, changed the internalization mechanism of the lipoplexes. The transfection efficiency of select ternary lipoplexes derived from cationic gemini surfactants and lipids was several times superior to the transfection efficiency of corresponding binary lipoplexes, also surpassing standard transfection systems. The overall impact of gemini surfactants into the formation and dynamic of cationic bilayers was found to depend heavily on the presence of colipids, their nature, and amount present in lipoplexes. The study confirmed the possibility of combining the specific properties of pyridinium gemini surfactants and cationic lipids synergistically to obtain efficient synthetic transfection systems with negligible cytotoxicity useful for therapeutic gene delivery.


Assuntos
DNA/química , Técnicas de Transferência de Genes , Lipídeos/química , Compostos de Piridínio/química , Tensoativos/química , Cátions , Linhagem Celular Tumoral , Sobrevivência Celular , Humanos , Estrutura Molecular , Transfecção
15.
Mol Biol Cell ; 25(6): 936-47, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24430870

RESUMO

Emerging findings suggest that two lineages of mitochondrial Ca(2+) uptake participate during active and resting states: 1) the major eukaryotic membrane potential-dependent mitochondrial Ca(2+) uniporter and 2) the evolutionarily conserved exchangers and solute carriers, which are also involved in ion transport. Although the influx of Ca(2+) across the inner mitochondrial membrane maintains metabolic functions and cell death signal transduction, the mechanisms that regulate mitochondrial Ca(2+) accumulation are unclear. Solute carriers--solute carrier 25A23 (SLC25A23), SLC25A24, and SLC25A25--represent a family of EF-hand-containing mitochondrial proteins that transport Mg-ATP/Pi across the inner membrane. RNA interference-mediated knockdown of SLC25A23 but not SLC25A24 and SLC25A25 decreases mitochondrial Ca(2+) uptake and reduces cytosolic Ca(2+) clearance after histamine stimulation. Ectopic expression of SLC25A23 EF-hand-domain mutants exhibits a dominant-negative phenotype of reduced mitochondrial Ca(2+) uptake. In addition, SLC25A23 interacts with mitochondrial Ca(2+) uniporter (MCU; CCDC109A) and MICU1 (CBARA1) while also increasing IMCU. In addition, SLC25A23 knockdown lowers basal mROS accumulation, attenuates oxidant-induced ATP decline, and reduces cell death. Further, reconstitution with short hairpin RNA-insensitive SLC25A23 cDNA restores mitochondrial Ca(2+) uptake and superoxide production. These findings indicate that SLC25A23 plays an important role in mitochondrial matrix Ca(2+) influx.


Assuntos
Antiporters/genética , Canais de Cálcio/genética , Cálcio/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Trifosfato de Adenosina/metabolismo , Sistemas de Transporte de Aminoácidos Acídicos/antagonistas & inibidores , Sistemas de Transporte de Aminoácidos Acídicos/genética , Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Antiporters/antagonistas & inibidores , Antiporters/metabolismo , Canais de Cálcio/metabolismo , Sinalização do Cálcio , Proteínas de Ligação ao Cálcio/antagonistas & inibidores , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Morte Celular , Células Clonais , Regulação da Expressão Gênica , Células HeLa , Histamina/farmacologia , Humanos , Transporte de Íons/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas Mitocondriais/antagonistas & inibidores , Proteínas Mitocondriais/metabolismo , Estresse Oxidativo , Consumo de Oxigênio/efeitos dos fármacos , Estrutura Terciária de Proteína , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo
16.
Circ Res ; 113(5): 539-52, 2013 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-23801066

RESUMO

RATIONALE: Autologous bone marrow-derived or cardiac-derived stem cell therapy for heart disease has demonstrated safety and efficacy in clinical trials, but functional improvements have been limited. Finding the optimal stem cell type best suited for cardiac regeneration is the key toward improving clinical outcomes. OBJECTIVE: To determine the mechanism by which novel bone-derived stem cells support the injured heart. METHODS AND RESULTS: Cortical bone-derived stem cells (CBSCs) and cardiac-derived stem cells were isolated from enhanced green fluorescent protein (EGFP+) transgenic mice and were shown to express c-kit and Sca-1 as well as 8 paracrine factors involved in cardioprotection, angiogenesis, and stem cell function. Wild-type C57BL/6 mice underwent sham operation (n=21) or myocardial infarction with injection of CBSCs (n=67), cardiac-derived stem cells (n=36), or saline (n=60). Cardiac function was monitored using echocardiography. Only 2/8 paracrine factors were detected in EGFP+ CBSCs in vivo (basic fibroblast growth factor and vascular endothelial growth factor), and this expression was associated with increased neovascularization of the infarct border zone. CBSC therapy improved survival, cardiac function, regional strain, attenuated remodeling, and decreased infarct size relative to cardiac-derived stem cells- or saline-treated myocardial infarction controls. By 6 weeks, EGFP+ cardiomyocytes, vascular smooth muscle, and endothelial cells could be identified in CBSC-treated, but not in cardiac-derived stem cells-treated, animals. EGFP+ CBSC-derived isolated myocytes were smaller and more frequently mononucleated, but were functionally indistinguishable from EGFP- myocytes. CONCLUSIONS: CBSCs improve survival, cardiac function, and attenuate remodeling through the following 2 mechanisms: (1) secretion of proangiogenic factors that stimulate endogenous neovascularization, and (2) differentiation into functional adult myocytes and vascular cells.


Assuntos
Osso e Ossos/citologia , Transdiferenciação Celular , Células Endoteliais/citologia , Células-Tronco Multipotentes/fisiologia , Infarto do Miocárdio/fisiopatologia , Miócitos Cardíacos/citologia , Comunicação Parácrina/fisiologia , Proteínas Angiogênicas/biossíntese , Proteínas Angiogênicas/genética , Proteínas Angiogênicas/metabolismo , Animais , Antígenos Ly/biossíntese , Antígenos Ly/genética , Biomarcadores , Células Cultivadas/citologia , Células Cultivadas/metabolismo , Regulação da Expressão Gênica , Genes Reporter , Proteínas de Membrana/biossíntese , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células-Tronco Multipotentes/citologia , Células-Tronco Multipotentes/metabolismo , Células-Tronco Multipotentes/transplante , Infarto do Miocárdio/patologia , Neovascularização Fisiológica/genética , Proteínas Proto-Oncogênicas c-kit/biossíntese , Proteínas Proto-Oncogênicas c-kit/genética , Remodelação Ventricular/fisiologia
17.
J Immunol ; 188(4): 2014-22, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22250084

RESUMO

MUC1 is a membrane-tethered mucin glycoprotein expressed on the apical surface of mucosal epithelial cells. Previous in vivo and in vitro studies established that MUC1 counterregulates airway inflammation by suppressing TLR signaling. In this article, we elucidate the mechanism by which MUC1 inhibits TLR5 signaling. Overexpression of MUC1 in HEK293 cells dramatically reduced Pseudomonas aeruginosa-stimulated IL-8 expression and decreased the activation of NF-κB and MAPK compared with cells not expressing MUC1. However, overexpression of MUC1 in HEK293 cells did not affect NF-κB or MAPK activation in response to TNF-α. Overexpression of MyD88 abrogated the ability of MUC1 to inhibit NF-κB activation, and MUC1 overexpression inhibited flagellin-induced association of TLR5/MyD88 compared with controls. The MUC1 cytoplasmic tail associated with TLR5 in all cells tested, including HEK293T cells, human lung adenocarcinoma cell line A549 cells, and human and mouse primary airway epithelial cells. Activation of epidermal growth factor receptor tyrosine kinase with TGF-α induced phosphorylation of the MUC1 cytoplasmic tail at the Y46EKV sequence and increased association of MUC1/TLR5. Finally, in vivo experiments demonstrated increased immunofluorescence colocalization of Muc1/TLR5 and Muc1/phosphotyrosine staining patterns in mouse airway epithelium and increased Muc1 tyrosine phosphorylation in mouse lung homogenates following P. aeruginosa infection. In conclusion, epidermal growth factor receptor tyrosine phosphorylates MUC1, leading to an increase in its association with TLR5, thereby competitively and reversibly inhibiting recruitment of MyD88 to TLR5 and downstream signaling events. This unique ability of MUC1 to control TLR5 signaling suggests its potential role in the pathogenesis of chronic inflammatory lung diseases.


Assuntos
Receptores ErbB/metabolismo , Mucina-1/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Mucosa Respiratória/metabolismo , Receptor 5 Toll-Like/metabolismo , Animais , Linhagem Celular , Células Epiteliais/metabolismo , Receptores ErbB/biossíntese , Flagelina/metabolismo , Regulação da Expressão Gênica , Células HEK293 , Humanos , Interleucina-8/biossíntese , Pulmão/metabolismo , Pneumopatias/imunologia , Pneumopatias/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Quinases Ativadas por Mitógeno/biossíntese , Proteínas Quinases Ativadas por Mitógeno/imunologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Mucina-1/biossíntese , Fator 88 de Diferenciação Mieloide/biossíntese , NF-kappa B/biossíntese , NF-kappa B/metabolismo , Fosforilação , Infecções por Pseudomonas/imunologia , Infecções por Pseudomonas/metabolismo , Pseudomonas aeruginosa/imunologia , Pseudomonas aeruginosa/patogenicidade , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA