RESUMO
Measurements of cell lineages are central to a variety of fundamental biological questions, ranging from developmental to cancer biology. However, accurate lineage tracing requires nearly perfect cell tracking, which can be challenging due to cell motion during imaging. Here we demonstrate the integration of microfabrication, imaging, and image processing approaches to demonstrate a platform for cell lineage tracing. We use quantitative phase imaging (QPI), a label-free imaging approach that quantifies cell mass. This gives an additional parameter, cell mass, that can be used to improve tracking accuracy. We confine lineages within microwells fabricated to reduce cell adhesion to sidewalls made of a low refractive index polymer. This also allows the microwells themselves to serve as references for QPI, enabling measurement of cell mass even in confluent microwells. We demonstrate application of this approach to immortalized adherent and nonadherent cell lines as well as stimulated primary B cells cultured ex vivo. Overall, our approach enables lineage tracking, or measurement of lineage mass, in a platform that can be customized to varied cell types.
Assuntos
Refratometria , Humanos , Linhagem da Célula , Rastreamento de Células/métodos , Rastreamento de Células/instrumentação , Animais , Camundongos , Linfócitos B/citologia , Imageamento Quantitativo de FaseRESUMO
Antibody responses require the proliferative expansion of B cells controlled by affinity-dependent signals. Yet, proliferative bursts are heterogeneous, varying between 0 and 8 divisions in response to the same stimulus. NFκB cRel is activated in response to immune stimulation in B cells and is genetically required for proliferation. Here, we asked whether proliferative heterogeneity is controlled by natural variations in cRel abundance. We developed a fluorescent reporter mTFP1-cRel for the direct observation of cRel in live proliferating B cells. We found that cRel is heterogeneously distributed among naïve B cells, which are enriched for high expressors in a heavy-tailed distribution. We found that high cRel expressors show faster activation of the proliferative program, but do not sustain it well, with population expansion decaying earlier. With a mathematical model of the molecular network, we showed that cRel heterogeneity arises from balancing positive feedback by autoregulation and negative feedback by its inhibitor IκBε, confirmed by mouse knockouts. Using live-cell fluorescence microscopy, we showed that increased cRel primes B cells for early proliferation via higher basal expression of the cell cycle driver cMyc. However, peak cMyc induction amplitude is constrained by incoherent feedforward regulation, decoding the fold change of cRel activity to terminate the proliferative burst. This results in a complex nonlinear, nonmonotonic relationship between cRel expression and the extent of proliferation. These findings emphasize the importance of direct observational studies to complement gene knockout results and to learn about quantitative relationships between biological processes and their key regulators in the context of natural variations.
Assuntos
Linfócitos B , Proliferação de Células , NF-kappa B , Animais , Linfócitos B/imunologia , Linfócitos B/metabolismo , Camundongos , NF-kappa B/metabolismo , Camundongos Knockout , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-rel/metabolismo , Proteínas Proto-Oncogênicas c-rel/genéticaRESUMO
The functional state of cells is dependent on their microenvironmental context. Prior studies described how polarizing cytokines alter macrophage transcriptomes and epigenomes. Here, we characterized the functional responses of 6 differentially polarized macrophage populations by measuring the dynamics of transcription factor nuclear factor κB (NF-κB) in response to 8 stimuli. The resulting dataset of single-cell NF-κB trajectories was analyzed by three approaches: (1) machine learning on time-series data revealed losses of stimulus distinguishability with polarization, reflecting canalized effector functions. (2) Informative trajectory features driving stimulus distinguishability ("signaling codons") were identified and used for mapping a cell state landscape that could then locate macrophages conditioned by an unrelated condition. (3) Kinetic parameters, inferred using a mechanistic NF-κB network model, provided an alternative mapping of cell states and correctly predicted biochemical findings. Together, this work demonstrates that a single analyte's dynamic trajectories may distinguish the functional states of single cells and molecular network states underlying them. A record of this paper's transparent peer review process is included in the supplemental information.
Assuntos
Macrófagos , NF-kappa B , Transdução de Sinais , Macrófagos/metabolismo , NF-kappa B/metabolismo , Animais , Camundongos , Polaridade Celular/fisiologia , Humanos , Citocinas/metabolismo , Ativação de Macrófagos , Análise de Célula Única/métodos , Aprendizado de MáquinaRESUMO
Macrophages sense pathogens and orchestrate specific immune responses. Stimulus specificity is thought to be achieved through combinatorial and dynamical coding by signaling pathways. While NFκB dynamics are known to encode stimulus information, dynamical coding in other signaling pathways and their combinatorial coordination remain unclear. Here, we established live-cell microscopy to investigate how NFκB and p38 dynamics interface in stimulated macrophages. Information theory and machine learning revealed that p38 dynamics distinguish cytokine TNF from pathogen-associated molecular patterns and high doses from low, but contributed little to information-rich NFκB dynamics when both pathways are considered. This suggests that immune response genes benefit from decoding immune signaling dynamics or combinatorics, but not both. We found that the heterogeneity of the two pathways is surprisingly uncorrelated. Mathematical modeling revealed potential sources of uncorrelated heterogeneity in the branched pathway network topology and predicted it to drive gene expression variability. Indeed, genes dependent on both p38 and NFκB showed high scRNAseq variability and bimodality. These results identify combinatorial signaling as a mechanism to restrict NFκB-AND-p38-responsive inflammatory cytokine expression to few cells.
Assuntos
Inflamação , Macrófagos , NF-kappa B , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Macrófagos/metabolismo , Macrófagos/imunologia , Inflamação/metabolismo , Inflamação/genética , Inflamação/imunologia , Animais , Camundongos , Citocinas/metabolismo , Aprendizado de Máquina , Regulação da Expressão Gênica , Humanos , Fator de Necrose Tumoral alfa/metabolismoRESUMO
The noncanonical NFκB signaling pathway mediates the biological functions of diverse cell survival, growth, maturation, and differentiation factors that are important for the development and maintenance of hematopoietic cells and immune organs. Its dysregulation is associated with a number of immune pathologies and malignancies. Originally described as the signaling pathway that controls the NFκB family member RelB, we now know that noncanonical signaling also controls NFκB RelA and cRel. Here, we aim to clarify our understanding of the molecular network that mediates noncanonical NFκB signaling and review the human diseases that result from a deficient or hyper-active noncanonical NFκB pathway. It turns out that dysregulation of RelA and cRel, not RelB, is often implicated in mediating the resulting pathology. This article is categorized under: Immune System Diseases > Molecular and Cellular Physiology Cancer > Molecular and Cellular Physiology Immune System Diseases > Stem Cells and Development.
RESUMO
Nuclear factor kappa B (NF-κB) is a key regulator in immune signaling and is known to exhibit a digital activation pattern. Yet the molecular basis underlying the heterogeneity in NF-κB activation at single-cell level is not entirely understood. Here, we show that NF-κB activation in single cells is largely regulated by intrinsic differences at the receptor level. Using the genome editing and time-lapse imaging, we directly characterize endogenous TNFR1 dynamics and NF-κB activation from the same single cells. Total internal reflection fluorescence (TIRF) microscopy shows that endogenous TNFR1 forms pre-ligand clusters in the resting cells. Upon tumor necrosis factor (TNF) stimulation, the diffusion coefficient of membrane TNFR1 was significantly decreased and a substantial level of TNFR1 undergoes oligomerization to form trimers and hexamers. Moreover, multi-color cell imaging reveals that both digital and graded information processing regulate NF-κB activation across different TNFR1 expression levels. Our results indicate that single-cell NF-κB activation potential strongly correlates with its TNFR1 characteristics.
RESUMO
Individual cell sensing of external cues has evolved through the temporal patterns in signaling. Since nuclear factor κB (NF-κB) signaling dynamics have been examined using a single subunit, RelA, it remains unclear whether more information might be transmitted via other subunits. Using NF-κB double-knockin reporter mice, we monitored both canonical NF-κB subunits, RelA and c-Rel, simultaneously in single macrophages by quantitative live-cell imaging. We show that signaling features of RelA and c-Rel convey more information about the stimuli than those of either subunit alone. Machine learning is used to predict the ligand identity accurately based on RelA and c-Rel signaling features without considering the co-activated factors. Ligand discrimination is achieved through selective non-redundancy of RelA and c-Rel signaling dynamics, as well as their temporal coordination. These results suggest a potential role of c-Rel in fine-tuning immune responses and highlight the need for approaches that will elucidate the mechanisms regulating NF-κB subunit specificity.
Assuntos
NF-kappa B , Proteínas Proto-Oncogênicas c-rel , Camundongos , Animais , NF-kappa B/metabolismo , Ligantes , Proteínas Proto-Oncogênicas c-rel/metabolismo , Fator de Transcrição RelA/metabolismo , Transdução de Sinais , Macrófagos/metabolismoRESUMO
BACKGROUND: Ischemia-reperfusion injury (IRI) is a significant clinical concern in liver transplantation, with a key influence on short-term and long-term allograft and patient survival. Myeloid cells trigger and sustain tissue inflammation and damage associated with IRI, but the mechanisms regulating these activities are unknown. To address this, we investigated the molecular characteristics of intragraft myeloid cells present in biopsy-proven IRI- and IRI+ liver transplants. METHODS: RNA-sequencing was performed on 80 pre-reperfusion and post-reperfusion biopsies from 40 human recipients of liver transplantation (23 IRI+, 17 IRI-). We used transcriptional profiling and computational approaches to identify specific gene coexpression network modules correlated with functional subsets of MPO+, lysozyme+, and CD68+ myeloid cells quantified by immunohistochemistry on sequential sections from the same patient biopsies. RESULTS: A global molecular map showed gene signatures related to myeloid activation in all patients regardless of IRI status; however, myeloid cell subsets differed dramatically in their spatial morphology and associated gene signatures. IRI- recipients were found to have a natural corticosteroid production and response profile from pre-reperfusion to post-reperfusion, particularly among monocytes/macrophages. The pre-reperfusion signature of IRI+ recipients included acute inflammatory responses in neutrophils and increased translation of adaptive immune-related genes in monocytes/macrophages coupled with decreased glucocorticoid responses. Subsequent lymphocyte activation at post-reperfusion identified transcriptional programs associated with the transition to adaptive immunity found only among IRI+ recipients. CONCLUSIONS: Myeloid subset-specific genes and related signaling pathways provide targets for the development of therapeutic strategies aimed at limiting IRI in the clinical setting of liver transplantation.
Assuntos
Transplante de Fígado , Traumatismo por Reperfusão , Humanos , Transplante de Fígado/efeitos adversos , Traumatismo por Reperfusão/genética , Leucócitos , Imunidade Adaptativa , Biópsia , InflamaçãoRESUMO
Proximal tibial osteotomy (PTO) is an effective procedure for active and young adult patients with symptomatic unicompartmental osteoarthritis and malalignment. They were considered technically demanding and prone to various complications related to the surgical technique, biomechanical or biological origin. Among the most important are hinge fractures and delayed or non-healing, neurovascular complications, loss of correction, implant-related problems, patellofemoral complaints, biological complications and changes in limb length. Being aware of these problems can help minimizing their prevalence and improve the results of the procedure.The aim of this narrative review is to discuss the potential complications that may occur during and after proximal tibial osteotomies, their origin and ways to prevent them.
RESUMO
Background: Klebsiella pneumoniae (KP) is a major cause of hospital-acquired infections, such as pneumonia. Moreover, it is classified as a pathogen of concern due to sprawling anti-microbial resistance. During infection, the gram-negative pathogen is capable of establishing an intracellular niche in macrophages by altering cellular metabolism. One factor critically affecting the host-pathogen interaction is the availability of essential nutrients, like iron, which is required for KP to proliferate but which also modulates anti-microbial immune effector pathways. We hypothesized, that KP manipulates macrophage iron homeostasis to acquire this crucial nutrient for sustained proliferation. Methods: We applied an in-vitro infection model, in which human macrophage-like PMA-differentiated THP1 cells were infected with KP (strain ATCC 43816). During a 24-h course of infection, we quantified the number of intracellular bacteria via serial plating of cell lysates and evaluated the effects of different stimuli on intracellular bacterial numbers and iron acquisition. Furthermore, we analyzed host and pathogen specific gene and protein expression of key iron metabolism molecules. Results: Viable bacteria are recovered from macrophage cell lysates during the course of infection, indicative of persistence of bacteria within host cells and inefficient pathogen clearing by macrophages. Strikingly, following KP infection macrophages strongly induce the expression of the main cellular iron importer transferrin-receptor-1 (TFR1). Accordingly, intracellular KP proliferation is further augmented by the addition of iron loaded transferrin. The induction of TFR1 is mediated via the STAT-6-IL-10 axis, and pharmacological inhibition of this pathway reduces macrophage iron uptake, elicits bacterial iron starvation, and decreases bacterial survival. Conclusion: Our results suggest, that KP manipulates macrophage iron metabolism to acquire iron once confined inside the host cell and enforces intracellular bacterial persistence. This is facilitated by microbial mediated induction of TFR1 via the STAT-6-IL-10 axis. Mechanistic insights into immune metabolism will provide opportunities for the development of novel antimicrobial therapies.
RESUMO
BACKGROUND: Autoimmune diseases are leading causes of ill health and morbidity and have diverse etiology. Two signaling pathways are key drivers of autoimmune pathology, interferon and nuclear factor-κB (NF-κB)/RelA, defining the 2 broad labels of interferonopathies and relopathies. Prior work has established that genetic loss of function of the NF-κB subunit RelB leads to autoimmune and inflammatory pathology in mice and humans. OBJECTIVE: We sought to characterize RelB-deficient autoimmunity by unbiased profiling of the responses of immune sentinel cells to stimulus and to determine the functional role of dysregulated gene programs in the RelB-deficient pathology. METHODS: Transcriptomic profiling was performed on fibroblasts and dendritic cells derived from patients with RelB deficiency and knockout mice, and transcriptomic responses and pathology were assessed in mice deficient in both RelB and the type I interferon receptor. RESULTS: We found that loss of RelB in patient-derived fibroblasts and mouse myeloid cells results in elevated induction of hundreds of interferon-stimulated genes. Removing hyperexpression of the interferon-stimulated gene program did not ameliorate the autoimmune pathology of RelB knockout mice. Instead, we found that RelB suppresses a different set of inflammatory response genes in a manner that is independent of interferon signaling but associated with NF-κB binding motifs. CONCLUSION: Although transcriptomic profiling would describe RelB-deficient autoimmune disease as an interferonopathy, the genetic evidence indicates that the pathology in mice is interferon-independent.
Assuntos
Doenças Autoimunes , NF-kappa B , Animais , Humanos , Camundongos , Doenças Autoimunes/genética , Interferons/genética , Camundongos Knockout , NF-kappa B/metabolismo , Transdução de Sinais , Fator de Transcrição RelB/genéticaRESUMO
Tumor necrosis factor (TNF) is a key inflammatory cytokine that warns recipient cells of a nearby infection or tissue damage. Acute exposure to TNF activates characteristic oscillatory dynamics of the transcription factor NFκB and induces a characteristic gene expression program; these are distinct from the responses of cells directly exposed to pathogen-associated molecular patterns (PAMPs). Here, we report that tonic TNF exposure is critical for safeguarding TNF's specific functions. In the absence of tonic TNF conditioning, acute exposure to TNF causes (i) NFκB signaling dynamics that are less oscillatory and more like PAMP-responsive NFκB dynamics, (ii) immune gene expression that is more similar to the Pam3CSK4 response program, and (iii) broader epigenomic reprogramming that is characteristic of PAMP-responsive changes. We show that the absence of tonic TNF signaling effects subtle changes to TNF receptor availability and dynamics such that enhanced pathway activity results in non-oscillatory NFκB. Our results reveal tonic TNF as a key tissue determinant of the specific cellular responses to acute paracrine TNF exposure, and their distinction from responses to direct exposure to PAMPs.
Assuntos
Moléculas com Motivos Associados a Patógenos , Fator de Necrose Tumoral alfa , Moléculas com Motivos Associados a Patógenos/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Transdução de Sinais , NF-kappa B/metabolismo , Macrófagos/metabolismoRESUMO
In this study, a synthesis route of tri(quinolin-8-yl)amine (L), a recent member of the tetradentate tris(2-pyridylmethyl)amine (TPA) ligand family, is reported. With the neutral ligand L bound to an iron(II) center in κ4 mode, two cis-oriented coordination sites remain vacant. These can be occupied by coligands such as counterions and solvent molecules. How sensitive this equilibrium can be is most evident if both triflate anions and acetonitrile molecules are available. All three combinationsâbis(triflato), bis(acetonitrile), and mixed coligand speciesâcould be characterized by single-crystal X-ray diffraction (SCXRD), which is unique so far for this class of ligand. While at room temperature, the three compounds tend to crystallize concomitantly, the equilibrium can be shifted in favor of the bis(acetonitrile) species by lowering the crystallization temperature. Removed from their mother liquor, the latter is very sensitive to evaporation of the residual solvent, which was observed by powder X-ray diffraction (PXRD) and Mössbauer spectroscopy. The solution behavior of the triflate and acetonitrile species was studied in detail using time- and temperature-resolved UV/vis spectroscopy, Mössbauer spectroscopy of frozen solution, NMR spectroscopy, and magnetic susceptibility measurements. The results indicate a bis(acetonitrile) species in acetonitrile showing a temperature-dependent spin-switching behavior between high- and low-spin. In dichloromethane, the results reveal a high-spin bis(triflato) species. In pursuit of understanding the coordination environment equilibria of the [Fe(L)]2+ complex, a series of compounds with different coligands was prepared and analyzed with SCXRD. The crystal structures indicate that the spin state can be controlled by changing the coordination environmentâall of the {N6}-coordinated complexes display geometries expected for low-spin species, while any other donor atom in the coligand position induces a shift to the high-spin state. This fundamental study sheds light on the coligand competition of triflate and acetonitrile, and the high number of crystal structures allows further insights into the influence of different coligands on the geometry and spin state of the complexes.
RESUMO
Immune sentinel macrophages initiate responses to pathogens via hundreds of immune response genes. Each immune threat demands a tailored response, suggesting that the capacity for stimulus-specific gene expression is a key functional hallmark of healthy macrophages. To quantify this property, termed "stimulus-response specificity" (SRS), we developed a single-cell experimental workflow and analytical approaches based on information theory and machine learning. We found that the response specificity of macrophages is driven by combinations of specific immune genes that show low cell-to-cell heterogeneity and are targets of separate signaling pathways. The "response specificity profile," a systematic comparison of multiple stimulus-response distributions, was distinctly altered by polarizing cytokines, and it enabled an assessment of the functional state of macrophages. Indeed, the response specificity profile of peritoneal macrophages from old and obese mice showed characteristic differences, suggesting that SRS may be a basis for measuring the functional state of innate immune cells. A record of this paper's transparent peer review process is included in the supplemental information.
Assuntos
Citocinas , Macrófagos , Animais , Camundongos , Citocinas/metabolismo , Transdução de SinaisRESUMO
Necroptosis is a form of regulated cell death associated with degenerative disorders, autoimmune and inflammatory diseases, and cancer. To better understand the biochemical mechanisms regulating necroptosis, we constructed a detailed computational model of tumor necrosis factor-induced necroptosis based on known molecular interactions from the literature. Intracellular protein levels, used as model inputs, were quantified using label-free mass spectrometry, and the model was calibrated using Bayesian parameter inference to experimental protein time course data from a well-established necroptosis-executing cell line. The calibrated model reproduced the dynamics of phosphorylated mixed lineage kinase domain-like protein, an established necroptosis reporter. A subsequent dynamical systems analysis identified four distinct modes of necroptosis signal execution, distinguished by rate constant values and the roles of the RIP1 deubiquitinating enzymes A20 and CYLD. In one case, A20 and CYLD both contribute to RIP1 deubiquitination, in another RIP1 deubiquitination is driven exclusively by CYLD, and in two modes either A20 or CYLD acts as the driver with the other enzyme, counterintuitively, inhibiting necroptosis. We also performed sensitivity analyses of initial protein concentrations and rate constants to identify potential targets for modulating necroptosis sensitivity within each mode. We conclude by associating numerous contrasting and, in some cases, counterintuitive experimental results reported in the literature with one or more of the model-predicted modes of necroptosis execution. In all, we demonstrate that a consensus pathway model of tumor necrosis factor-induced necroptosis can provide insights into unresolved controversies regarding the molecular mechanisms driving necroptosis execution in numerous cell types under different experimental conditions.
Assuntos
Sinais (Psicologia) , Necroptose , Humanos , Necrose/metabolismo , Necrose/patologia , Teorema de Bayes , Fator de Necrose Tumoral alfa/farmacologia , ApoptoseRESUMO
A previously reported non-toxic guanidine-iron catalyst active in the ring opening polymerization (ROP) of polylactide (PLA) under industrially relevant conditions was evaluated for its activity in the alcoholysis and aminolysis of PLA under mild conditions. Kinetic and thermodynamic parameters were determined for the methanolysis of PLA with [FeCl2 (TMG5NMe2 asme)] (C1) using 1 H NMR spectroscopy. A comparison with the Zn analog of C1 showed that the metal center has a large impact on the activity for the alcoholysis. Further, the influence of different nucleophiles was tested broadening the scope of products from PLA waste. C1 is the first discrete metal catalyst reported to be active in the selective aminolysis of PLA. Catalyst recycling, scale-up experiments and solvent-free alcoholysis were conducted successfully strengthening the industrial relevance and highlighting aspects of green chemistry. Moreover, the selective depolymerization of PLA in polymer blends was successful. C1 is a promising catalyst for a circular (bio)plastics economy.
RESUMO
BACKGROUND: Genetic aberrations in the NFκB pathway lead to primary immunodeficiencies with various degrees of severity. We previously demonstrated that complete ablation of the RelB transcription factor, a key component of the alternative pathway, results in an early manifested combined immunodeficiency requiring stem cell transplantation. OBJECTIVE: To study the molecular basis of a progressive severe autoimmunity and immunodeficiency in three patients. METHODS: Whole exome sequencing was performed to identify the genetic defect. Molecular and cellular techniques were utilized to assess the variant impact on NFκB signaling, canonical and alternative pathway crosstalk, as well as the resultant effects on immune function. RESULTS: Patients presented with multiple autoimmune progressive severe manifestations encompassing the liver, gut, lung, and skin, becoming debilitating in the second decade of life. This was accompanied by a deterioration of the immune system, demonstrating an age-related decline in naïve T cells and responses to mitogens, accompanied by a gradual loss of all circulating CD19+ cells. Whole exome sequencing identified a novel homozygous c. C1091T (P364L) transition in RELB. The P364L RelB protein was unstable, with extremely low expression, but retained some function and could be transiently and partially upregulated following Toll-like receptor stimulation. Stimulation of P364L patient fibroblasts resulted in a marked rise in a cluster of pro-inflammatory hyper-expressed transcripts consistent with the removal of RelB inhibitory effect on RelA function. This is likely the main driver of autoimmune manifestations in these patients. CONCLUSION: Incomplete loss of RelB provided a unique opportunity to gain insights into NFκB's pathway interactions as well as the pathogenesis of autoimmunity. The P364L RelB mutation leads to gradual decline in immune function with progression of severe debilitating autoimmunity.
Assuntos
Doenças Autoimunes , Fator de Transcrição RelB , Humanos , Fator de Transcrição RelB/genética , Fator de Transcrição RelB/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais , Regulação da Expressão Gênica , Doenças Autoimunes/genéticaRESUMO
Anemia is a major health issue and associated with increased morbidity. Iron deficiency anemia (IDA) is the most prevalent, followed by anemia of chronic disease (ACD). IDA and ACD often co-exist, challenging diagnosis and treatment. While iron supplementation is the first-line therapy for IDA, its optimal route of administration and the efficacy of different repletion strategies in ACD are elusive. Female Lewis rats were injected with group A streptococcal peptidoglycan-polysaccharide (PG-APS) to induce inflammatory arthritis with associated ACD and/or repeatedly phlebotomized and fed with a low iron diet to induce IDA, or a combination thereof (ACD/IDA). Iron was either supplemented by daily oral gavage of ferric maltol or by weekly intravenous (i.v.) injection of ferric carboxymaltose for up to 4 weeks. While both strategies reversed IDA, they remained ineffective to improve hemoglobin (Hb) levels in ACD, although oral iron showed slight amelioration of various erythropoiesis-associated parameters. In contrast, both iron treatments significantly increased Hb in ACD/IDA. In ACD and ACD/IDA animals, i.v. iron administration resulted in iron trapping in liver and splenic macrophages, induction of ferritin expression and increased circulating levels of the iron hormone hepcidin and the inflammatory cytokine interleukin-6, while oral iron supplementation reduced interleukin-6 levels. Thus, oral and i.v. iron resulted in divergent effects on systemic and tissue iron homeostasis and inflammation. Our results indicate that both iron supplements improve Hb in ACD/IDA, but are ineffective in ACD with pronounced inflammation, and that under the latter condition, i.v. iron is trapped in macrophages and may enhance inflammation.
Assuntos
Anemia Ferropriva , Anemia , Feminino , Animais , Ratos , Interleucina-6 , Ratos Endogâmicos Lew , Anemia/diagnóstico , Ferro/metabolismo , Anemia Ferropriva/tratamento farmacológico , Anemia Ferropriva/etiologia , Anemia Ferropriva/diagnóstico , Inflamação/tratamento farmacológicoRESUMO
The sequestration of iron in case of infection, termed nutritional immunity, is an established strategy of host defense. However, the interaction between pathogens and the mammalian iron storage protein ferritin is hitherto not completely understood. To better characterize the function of ferritin in Gram-negative infections, we incubated iron-starved cultures of Salmonella Typhimurium and knockout mutant strains defective for major iron uptake pathways or Escherichia coli with horse spleen ferritin or ionic iron as the sole iron source. Additionally, we added bovine superoxide dismutase and protease inhibitors to the growth medium to assess the effect of superoxide and bacterial proteases, respectively, on Salmonella proliferation and reductive iron release. Compared to free ionic iron, ferritin-bound iron was less available to Salmonella, but was still sufficient to significantly enhance the growth of the bacteria. In the absence of various iron acquisition genes, the availability of ferritin iron further decreased. Supplementation with superoxide dismutase significantly reduced the growth of the ΔentC knockout strain with holoferritin as the sole iron source in comparison with ionic ferrous iron. In contrast, this difference was not observed in the wildtype strain, suggesting that superoxide dismutase undermines bacterial iron uptake from ferritin by siderophore-independent mechanisms. Ferritin seems to diminish iron availability for bacteria in comparison to ionic iron, and its iron sequestering effect could possibly be enhanced by host superoxide dismutase activity.