Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
1.
Viruses ; 16(4)2024 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-38675925

RESUMO

The interferon-induced host cell protein Shiftless (SFL) inhibits -1 programmed ribosomal frameshifting (-1PRF) required for the expression of HIV-1 Gal-Pol and the formation of infectious HIV-1 particles. However, the specific regions in SFL required for antiviral activity and the mechanism by which SFL inhibits -1PRF remain unclear. Employing alanine scanning mutagenesis, we found that basic amino acids in the predicted zinc ribbon motif of SFL are essential for the suppression of Gag-Pol expression but dispensable for anti-HIV-1 activity. We have shown that SFL inhibits the expression of the murine leukemia virus (MLV) Gag-Pol polyprotein and the formation of infectious MLV particles, although Gag-Pol expression of MLV is independent of -1PRF but requires readthrough of a stop codon. These findings indicate that SFL might inhibit HIV-1 infection by more than one mechanism and that SFL might target programmed translational readthrough as well as -1PRF signals, both of which are regulated by mRNA secondary structure elements.


Assuntos
Proteínas de Fusão gag-pol , Infecções por HIV , HIV-1 , Proteínas de Ligação a RNA , Humanos , Mudança da Fase de Leitura do Gene Ribossômico , Proteínas de Fusão gag-pol/genética , Proteínas de Fusão gag-pol/metabolismo , Regulação Viral da Expressão Gênica , Células HEK293 , Infecções por HIV/virologia , Infecções por HIV/genética , Infecções por HIV/metabolismo , HIV-1/genética , HIV-1/fisiologia , Vírus da Leucemia Murina/genética , Vírus da Leucemia Murina/fisiologia , Replicação Viral , Proteínas de Ligação a RNA/metabolismo
2.
Biochimie ; 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38432290

RESUMO

SARS-CoV-2 mainly infects the respiratory tract but can also target other organs, including the central nervous system. While it was recently shown that cells of the blood-brain-barrier are permissive to SARS-CoV-2 infection in vitro, it remains debated whether neurons can be infected. In this study, we demonstrate that vesicular stomatitis virus particles pseudotyped with the spike protein of SARS-CoV-2 variants WT, Alpha, Delta and Omicron enter the neuronal model cell line SH-SY5Y. Cell biological analyses of the pseudo-virus treated cultures showed marked alterations in microtubules of SH-SY5Y cells. Because the changes in ß-tubulin occurred in most cells, but only few were infected, we further asked whether interaction of the cells with spike protein might be sufficient to cause molecular and structural changes. For this, SH-SY5Y cells were incubated with trimeric spike proteins for time intervals of up to 24 h. CellProfiler™-based image analyses revealed changes in the intensities of microtubule staining in spike protein-incubated cells. Furthermore, expression of the spike protein-processing protease cathepsin L was found to be up-regulated by wild type, Alpha and Delta spike protein pseudotypes and cathepsin L was found to be secreted from spike protein-treated cells. We conclude that the mere interaction of the SARS-CoV-2 with neuronal cells can affect cellular architecture and proteolytic capacities. The molecular mechanisms underlying SARS-CoV-2 spike protein induced cytoskeletal changes in neuronal cells remain elusive and require future studies.

3.
Cell ; 187(3): 596-608.e17, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38194966

RESUMO

BA.2.86, a recently identified descendant of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron BA.2 sublineage, contains ∼35 mutations in the spike (S) protein and spreads in multiple countries. Here, we investigated whether the virus exhibits altered biological traits, focusing on S protein-driven viral entry. Employing pseudotyped particles, we show that BA.2.86, unlike other Omicron sublineages, enters Calu-3 lung cells with high efficiency and in a serine- but not cysteine-protease-dependent manner. Robust lung cell infection was confirmed with authentic BA.2.86, but the virus exhibited low specific infectivity. Further, BA.2.86 was highly resistant against all therapeutic antibodies tested, efficiently evading neutralization by antibodies induced by non-adapted vaccines. In contrast, BA.2.86 and the currently circulating EG.5.1 sublineage were appreciably neutralized by antibodies induced by the XBB.1.5-adapted vaccine. Collectively, BA.2.86 has regained a trait characteristic of early SARS-CoV-2 lineages, robust lung cell entry, and evades neutralizing antibodies. However, BA.2.86 exhibits low specific infectivity, which might limit transmissibility.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19 , SARS-CoV-2 , Humanos , Anticorpos Neutralizantes/metabolismo , Anticorpos Antivirais/metabolismo , Caspases/metabolismo , COVID-19/imunologia , COVID-19/virologia , Pulmão/virologia , SARS-CoV-2/classificação , SARS-CoV-2/genética , SARS-CoV-2/patogenicidade , SARS-CoV-2/fisiologia , Internalização do Vírus , Glicoproteína da Espícula de Coronavírus/genética
4.
Clin Transl Radiat Oncol ; 41: 100633, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37206410

RESUMO

Purpose: Palliative radiotherapy for patients with head and neck cancer can be used to alleviate symptoms. Only a few studies have investigated its impact on patient-reported outcomes (PRO). Therefore, we conducted a prospective multicenter observational study. The primary objective was to assess changes in health-related quality of life (HrQoL) per PRO. Methods: Eligibility criteria included i.) head and neck cancer and ii.) palliative radiotherapy indicated (EQD2Gy < 60 Gy). The primary follow-up date was eight weeks after radiotherapy (t8w). PRO measures included the EORTC QLQ-C30 and EORTC QLQ-H&N43 and pain per Numeric Rating Scale (NRS). Per protocol, five PRO domains were to be reported in detail as well as PRO domains corresponding to a primary and secondary symptom as determined by the individual patient. We defined a minimal important difference (MID) of 10 points. Results: From 06/2020 to 06/2022, 61 patients were screened and 21 patients were included. Due to death or decline in health-status, HrQoL data was available for 18 patients at the first fraction and for eight patients at t8w. The MID was not met for the predefined domains in terms of mean values as compared from first fraction to t8w. Individually in those patients with available HrQoL data at t8w, 71% (5/7) improved in their primary and 40% (2/5) in their secondary symptom domain reaching the MID from first fraction to t8w, respectively. There was a significant improvement in pain per NRS in those patients with available data at t8w per Wilcoxon signed rank test (p = 0.041). Acute mucositis of grade ≥3 per CTCAE v5.0 occurred in 44% (8/18) of the patients. The median overall survival was 11 months. Conclusion: Despite low patient numbers and risk of selection bias, our study shows some evidence of a benefit from palliative radiotherapy for head and neck cancer as measured by PRO.German Clinical Trial Registry identifier: DRKS00021197.

5.
Bioinformatics ; 39(5)2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37084275

RESUMO

MOTIVATION: Cancer is one of the leading causes of death worldwide. Despite significant improvements in prevention and treatment, mortality remains high for many cancer types. Hence, innovative methods that use molecular data to stratify patients and identify biomarkers are needed. Promising biomarkers can also be inferred from competing endogenous RNA (ceRNA) networks that capture the gene-miRNA gene regulatory landscape. Thus far, the role of these biomarkers could only be studied globally but not in a sample-specific manner. To mitigate this, we introduce spongEffects, a novel method that infers subnetworks (or modules) from ceRNA networks and calculates patient- or sample-specific scores related to their regulatory activity. RESULTS: We show how spongEffects can be used for downstream interpretation and machine learning tasks such as tumor classification and for identifying subtype-specific regulatory interactions. In a concrete example of breast cancer subtype classification, we prioritize modules impacting the biology of the different subtypes. In summary, spongEffects prioritizes ceRNA modules as biomarkers and offers insights into the miRNA regulatory landscape. Notably, these module scores can be inferred from gene expression data alone and can thus be applied to cohorts where miRNA expression information is lacking. AVAILABILITY AND IMPLEMENTATION: https://bioconductor.org/packages/devel/bioc/html/SPONGE.html.


Assuntos
Neoplasias da Mama , MicroRNAs , RNA Longo não Codificante , Humanos , Feminino , MicroRNAs/genética , MicroRNAs/metabolismo , Redes Reguladoras de Genes , Neoplasias da Mama/genética , Aprendizado de Máquina , Regulação Neoplásica da Expressão Gênica , RNA Longo não Codificante/genética
6.
Viruses ; 15(2)2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36851486

RESUMO

The COVID-19 pandemic remains a global health threat and novel antiviral strategies are urgently needed. SARS-CoV-2 employs the cellular serine protease TMPRSS2 for entry into lung cells, and TMPRSS2 inhibitors are being developed for COVID-19 therapy. However, the SARS-CoV-2 Omicron variant, which currently dominates the pandemic, prefers the endo/lysosomal cysteine protease cathepsin L over TMPRSS2 for cell entry, raising doubts as to whether TMPRSS2 inhibitors would be suitable for the treatment of patients infected with the Omicron variant. Nevertheless, the contribution of TMPRSS2 to the spread of SARS-CoV-2 in the infected host is largely unclear. In this study, we show that the loss of TMPRSS2 strongly reduced the replication of the Beta variant in the nose, trachea and lung of C57BL/6 mice, and protected the animals from weight loss and disease. The infection of mice with the Omicron variant did not cause disease, as expected, but again, TMPRSS2 was essential for efficient viral spread in the upper and lower respiratory tract. These results identify the key role of TMPRSS2 in SARS-CoV-2 Beta and Omicron infection, and highlight TMPRSS2 as an attractive target for antiviral intervention.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Humanos , Camundongos , Antivirais/farmacologia , Antivirais/uso terapêutico , Camundongos Endogâmicos C57BL , Pandemias , Serina Endopeptidases/genética
7.
Lancet Oncol ; 24(3): 239-251, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36796393

RESUMO

BACKGROUND: p16INK4a (p16) immunohistochemistry is the most widely used biomarker assay for inferring HPV causation in oropharyngeal cancer in clinical and trial settings. However, discordance exists between p16 and HPV DNA or RNA status in some patients with oropharyngeal cancer. We aimed to clearly quantify the extent of discordance, and its prognostic implications. METHODS: In this multicentre, multinational individual patient data analysis, we did a literature search in PubMed and Cochrane database for systematic reviews and original studies published in English between Jan 1, 1970, and Sept 30, 2022. We included retrospective series and prospective cohorts of consecutively recruited patients previously analysed in individual studies with minimum cohort size of 100 patients with primary squamous cell carcinoma of the oropharynx. Patient inclusion criteria were diagnosis with a primary squamous cell carcinoma of oropharyngeal cancer; data on p16 immunohistochemistry and on HPV testing; information on age, sex, tobacco, and alcohol use; staging by TNM 7th edition; information on treatments received; and data on clinical outcomes and follow-up (date of last follow-up if alive, date of recurrence or metastasis, and date and cause of death). There were no limits on age or performance status. The primary outcomes were the proportion of patients of the overall cohort who showed the different p16 and HPV result combinations, as well as 5-year overall survival and 5-year disease-free survival. Patients with recurrent or metastatic disease or who were treated palliatively were excluded from overall survival and disease-free survival analyses. Multivariable analysis models were used to calculate adjusted hazard ratios (aHR) for different p16 and HPV testing methods for overall survival, adjusted for prespecified confounding factors. FINDINGS: Our search returned 13 eligible studies that provided individual data for 13 cohorts of patients with oropharyngeal cancer from the UK, Canada, Denmark, Sweden, France, Germany, the Netherlands, Switzerland, and Spain. 7895 patients with oropharyngeal cancer were assessed for eligibility. 241 were excluded before analysis, and 7654 were eligible for p16 and HPV analysis. 5714 (74·7%) of 7654 patients were male and 1940 (25·3%) were female. Ethnicity data were not reported. 3805 patients were p16-positive, 415 (10·9%) of whom were HPV-negative. This proportion differed significantly by geographical region and was highest in the areas with lowest HPV-attributable fractions (r=-0·744, p=0·0035). The proportion of patients with p16+/HPV- oropharyngeal cancer was highest in subsites outside the tonsil and base of tongue (29·7% vs 9·0%, p<0·0001). 5-year overall survival was 81·1% (95% CI 79·5-82·7) for p16+/HPV+, 40·4% (38·6-42·4) for p16-/HPV-, 53·2% (46·6-60·8) for p16-/HPV+, and 54·7% (49·2-60·9) for p16+/HPV-. 5-year disease-free survival was 84·3% (95% CI 82·9-85·7) for p16+/HPV+, 60·8% (58·8-62·9) for p16-/HPV-; 71·1% (64·7-78·2) for p16-/HPV+, and 67·9% (62·5-73·7) for p16+/HPV-. Results were similar across all European sub-regions, but there were insufficient numbers of discordant patients from North America to draw conclusions in this cohort. INTERPRETATION: Patients with discordant oropharyngeal cancer (p16-/HPV+ or p16+/HPV-) had a significantly worse prognosis than patients with p16+/HPV+ oropharyngeal cancer, and a significantly better prognosis than patients with p16-/HPV- oropharyngeal cancer. Along with routine p16 immunohistochemistry, HPV testing should be mandated for clinical trials for all patients (or at least following a positive p16 test), and is recommended where HPV status might influence patient care, especially in areas with low HPV-attributable fractions. FUNDING: European Regional Development Fund, Generalitat de Catalunya, National Institute for Health Research (NIHR) UK, Cancer Research UK, Medical Research Council UK, and The Swedish Cancer Foundation and the Stockholm Cancer Society.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Orofaríngeas , Infecções por Papillomavirus , Humanos , Masculino , Feminino , Prognóstico , Estudos Retrospectivos , Estudos Prospectivos , Revisões Sistemáticas como Assunto , Carcinoma de Células Escamosas/patologia , Neoplasias Orofaríngeas/patologia , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Papillomaviridae/genética
8.
J Phys Chem B ; 127(5): 1178-1196, 2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36700884

RESUMO

Molecular dynamics (MD) simulations are reported for [polyethylene glycol (PEG)200], a polydisperse mixture of ethylene glycol oligomers with an average molar weight of 200 g·mol-1. As a first step, available force fields for describing ethylene glycol oligomers were tested on how accurately they reproduced experimental properties. They were found to all fall short on either reproducing density, a static property, or the self-diffusion coefficient, a dynamic property. Discrepancies with the experimental data increased with the increasing size of the tested ethylene glycol oligomer. From the available force fields, the optimized potential for liquid simulation (OPLS) force field was used to further investigate which adjustments to the force field would improve the agreement of simulated physical properties with experimental ones. Two parameters were identified and adjusted, the (HO)-C-C-O proper dihedral potential and the polarity of the hydroxy group. The parameter adjustments depended on the size of the ethylene glycol oligomer. Next, PEG200 was simulated with the OPLS force field with and without modifications to inspect their effects on the simulation results. The modifications to the OPLS force field significantly decreased hydrogen bonding overall and increased the propensity of intramolecular hydrogen bond formation at the cost of intermolecular hydrogen bond formation. Moreover, some of the tri- and more so tetraethylene glycol formed intramolecular hydrogen bonds between the hydroxy end groups while still maintaining strong intramolecular interactions with the ether oxygen atoms. These observations allowed the interpretation of the obtained RDFs as well as structural properties such as the average end-to-end distances and the average radii of gyration. The MD simulations with and without the modifications showed no evidence of preferential association of like-oligomers to form clusters nor any evidence of long-range ordering such as a side-by-side stacking of ethylene glycol oligomers. Instead, the simulation results support the picture of PEG200 being a random mixture of its ethylene glycol oligomer components. Finally, additional MD simulations of a binary mixture of tri-and hexaethylene glycol with the same average molar weight as PEG200 revealed very similar structural and physical properties as for PEG200.

9.
Int J Mol Sci ; 23(22)2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36430535

RESUMO

Recently, a recombinant SARS-CoV-2 lineage, XD, emerged that harbors a spike gene that is largely derived from the Omicron variant BA.1 in the genetic background of the Delta variant. This finding raised concerns that the recombinant virus might exhibit altered biological properties as compared to the parental viruses and might pose an elevated threat to human health. Here, using pseudotyped particles, we show that ACE2 binding and cell tropism of XD mimics that of BA.1. Further, XD and BA.1 displayed comparable sensitivity to neutralization by antibodies induced upon vaccination with BNT162b2/Comirnaty (BNT) or BNT vaccination followed by breakthrough infection. Our findings reveal important biological commonalities between XD and Omicron BA.1 host cell entry and its inhibition by antibodies.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Humanos , Glicoproteína da Espícula de Coronavírus/genética , SARS-CoV-2/genética , Proteínas do Envelope Viral/genética , Vacina BNT162 , Glicoproteínas de Membrana/metabolismo
10.
Viruses ; 14(7)2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35891432

RESUMO

The interferon-induced host cell protein shiftless (SFL) was reported to inhibit human immunodeficiency virus (HIV) infection by blocking the -1 programmed ribosomal frameshifting (-1PRF) required for expression of the Gag-Pol polyprotein. However, it is not clear how SFL inhibits -1PRF. To address this question, we focused on a 36 amino acids comprising region (termed required for antiviral activity (RAA)) that is essential for suppression of -1PRF and HIV infection and is missing from SFL short (SFLS), a splice variant of SFL with unknown function. Here, we confirm that SFL, but not SFLS, inhibits HIV -1PRF and show that inhibition is cell-type-independent. Mutagenic and biochemical analyses demonstrated that the RAA region is required for SFL self-interactions and confirmed that it is necessary for ribosome association and binding to the HIV RNA. Analysis of SFL mutants with six consecutive amino-acids-comprising deletions in the RAA region suggests effects on binding to the HIV RNA, complete inhibition of -1PRF, inhibition of Gag-Pol expression, and antiviral activity. In contrast, these amino acids did not affect SFL expression and were partially dispensable for SFL self-interactions and binding to the ribosome. Collectively, our results support the notion that SFL binds to the ribosome and the HIV RNA in order to block -1PRF and HIV infection, and suggest that the multimerization of SFL may be functionally important.


Assuntos
Infecções por HIV , Aminoácidos , Antivirais , Humanos , Mutagênicos , RNA
11.
Semin Immunol ; 60: 101644, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35902311

RESUMO

Hyperactivated local tissue is a cardinal feature of immune-mediated inflammatory diseases of various organs such as the joints, the gut, the skin, or the lungs. Tissue-resident structural and stromal cells, which get primed during repeated or long-lasting bouts of inflammation form the basis of this sensitization of the tissue. During priming, cells change their metabolism to make them fit for the heightened energy demands that occur during persistent inflammation. Epigenetic changes and, curiously, an activation of intracellularly expressed parts of the complement system drive this metabolic invigoration and enable tissue-resident cells and infiltrating immune cells to employ an arsenal of inflammatory functions, including activation of inflammasomes. Here we provide a current overview on complement activation and inflammatory transformation in tissue-occupying cells, focusing on fibroblasts during arthritis, and illustrate ways how therapeutics directed at complement C3 could potentially target the complosome to unprime cells in the tissue and induce long-lasting abatement of inflammation.


Assuntos
Ativação do Complemento , Inflamação , Humanos , Fibroblastos
12.
Am J Physiol Lung Cell Mol Physiol ; 323(3): L372-L389, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35762590

RESUMO

The redox status of the cysteine-rich SARS-CoV-2 spike glycoprotein (SARS-2-S) is important for the binding of SARS-2-S to angiotensin-converting enzyme 2 (ACE2), suggesting that drugs with a functional thiol group ("thiol drugs") may cleave cystines to disrupt SARS-CoV-2 cell entry. In addition, neutrophil-induced oxidative stress is a mechanism of COVID-19 lung injury, and the antioxidant and anti-inflammatory properties of thiol drugs, especially cysteamine, may limit this injury. To first explore the antiviral effects of thiol drugs in COVID-19, we used an ACE-2 binding assay and cell entry assays utilizing reporter pseudoviruses and authentic SARS-CoV-2 viruses. We found that multiple thiol drugs inhibit SARS-2-S binding to ACE2 and virus infection. The most potent drugs were effective in the low millimolar range, and IC50 values followed the order of their cystine cleavage rates and lower thiol pKa values. To determine if thiol drugs have antiviral effects in vivo and to explore any anti-inflammatory effects of thiol drugs in COVID-19, we tested the effects of cysteamine delivered intraperitoneally to hamsters infected with SARS-CoV-2. Cysteamine did not decrease lung viral infection, but it significantly decreased lung neutrophilic inflammation and alveolar hemorrhage. We speculate that the concentration of cysteamine achieved in the lungs with intraperitoneal delivery was insufficient for antiviral effects but sufficient for anti-inflammatory effects. We conclude that thiol drugs decrease SARS-CoV-2 lung inflammation and injury, and we provide rationale for future studies to test if direct (aerosol) delivery of thiol drugs to the airways might also result in antiviral effects.


Assuntos
Enzima de Conversão de Angiotensina 2 , Tratamento Farmacológico da COVID-19 , Anti-Inflamatórios/farmacologia , Antivirais/farmacologia , Antivirais/uso terapêutico , Cisteamina/farmacologia , Humanos , Peptidil Dipeptidase A/metabolismo , Preparações Farmacêuticas , SARS-CoV-2 , Compostos de Sulfidrila/farmacologia
13.
mBio ; 13(3): e0036422, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35467423

RESUMO

SARS-CoV-2 variants of concern (VOC) acquired mutations in the spike (S) protein, including E484K, that confer resistance to neutralizing antibodies. However, it is incompletely understood how these mutations impact viral entry into host cells. Here, we analyzed how mutations at position 484 that have been detected in COVID-19 patients impact cell entry and antibody-mediated neutralization. We report that mutation E484D markedly increased SARS-CoV-2 S-driven entry into the hepatoma cell line Huh-7 and the lung cell NCI-H1299 without augmenting ACE2 binding. Notably, mutation E484D largely rescued Huh-7 but not Vero cell entry from blockade by the neutralizing antibody Imdevimab and rendered Huh-7 cell entry ACE2-independent. These results suggest that the naturally occurring mutation E484D allows SARS-CoV-2 to employ an ACE2-independent mechanism for entry that is largely insensitive against Imdevimab, an antibody employed for COVID-19 therapy. IMPORTANCE The interaction of the SARS-CoV-2 spike protein (S) with the cellular receptor ACE2 is considered essential for infection and constitutes the key target for antibodies induced upon infection and vaccination. Here, using a surrogate system for viral entry, we provide evidence that a naturally occurring mutation can liberate SARS-CoV-2 from ACE2-dependence and that ACE2-independent entry may protect the virus from neutralization by an antibody used for COVID-19 therapy.


Assuntos
Anticorpos Monoclonais Humanizados , Anticorpos Neutralizantes , COVID-19 , SARS-CoV-2 , Internalização do Vírus , Enzima de Conversão de Angiotensina 2 , Animais , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Neutralizantes/farmacologia , Anticorpos Antivirais , COVID-19/terapia , Linhagem Celular , Chlorocebus aethiops , Humanos , Mutação , Ligação Proteica , Receptores Virais/metabolismo , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Células Vero
14.
Oncol Lett ; 23(5): 164, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35414827

RESUMO

Previous retrospective studies have elucidated a correlation between secretory leucocyte protease inhibitor (SLPI) and Annexin A2 (AnxA2), patient smoking status and tonsillar human papilloma virus (HPV) status. The current study assessed these parameters prospectively and to the best of our knowledge, analyzed SLPI-/AnxA2-expression for the first time in tonsillar swabs and sputum. Samples were obtained from 52 patients with tonsillar squamous cell carcinoma and 163 patients with tonsillar hyperplasia (H; n=56) and chronic or recurrent tonsillitis (CRT; n=107). HPV-DNA, SLPI and AnxA2 gene expression was analyzed in sputum, tonsillar swabs and tissue by performing reverse transcription-quantitative PCR. Results were compared with smoking status, revealing that smoking resulted in significantly increased SLPI gene expression in all biomaterials of all cases. SLPI-gene expression was significantly decreased in all HPV-DNA-positive samples (tissue/swab/sputum), while AnxA2 was significantly increased in all HPV-DNA-positive samples. Results from swabs and sputum were able to predict SLPI- and AnxA2 gene expression of the corresponding tonsil. The current prospective study confirmed previous retrospective results underlining this hypothesis: Smoking enhances SLPI-expression, preventing HPV-binding to AnxA2. HPV-binding to AnxA2 appears essential for successful cell-entry. SLPI/AnxA2-gene expression in swabs and sputum reflect their expression in tonsillar tissue. Accordingly, a positive AnxA2/SLPI-ratio in sputum/swabs could possibly be used to reduce HPV-associated carcinogenesis, by performing tonsillectomy or HPV-vaccination in patients with positive AnxA2/SLPI-ratios.

15.
Eur J Immunol ; 52(6): 970-977, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35253229

RESUMO

Effective vaccines and monoclonal antibodies have been developed against coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, the appearance of virus variants with higher transmissibility and pathogenicity is a major concern because of their potential to escape vaccines and clinically approved SARS-CoV-2- antibodies. Here, we use flow cytometry-based binding and pseudotyped SARS-CoV-2 neutralization assays to determine the efficacy of boost immunization and therapeutic antibodies to neutralize the dominant Omicron variant. We provide compelling evidence that the third vaccination with BNT162b2 increases the amount of neutralizing serum antibodies against Delta and Omicron variants, albeit to a lower degree when compared to the parental Wuhan strain. Therefore, a third vaccination is warranted to increase titers of protective serum antibodies, especially in the case of the Omicron variant. We also found that most clinically approved and otherwise potent therapeutic antibodies against the Delta variant failed to recognize and neutralize the Omicron variant. In contrast, some antibodies under preclinical development potentially neutralized the Omicron variant. Our studies also support using a flow cytometry-based antibody binding assay to rapidly monitor therapeutic candidates and serum titers against emerging SARS-CoV-2 variants.


Assuntos
Antineoplásicos Imunológicos , COVID-19 , Anticorpos Monoclonais , Anticorpos Neutralizantes , Anticorpos Antivirais , Vacina BNT162 , Vacinas contra COVID-19 , Humanos , SARS-CoV-2 , Vacinação
16.
Cell Mol Life Sci ; 79(1): 65, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013790

RESUMO

Coronavirus disease 2019 (COVID-19), the illness caused by a novel coronavirus now called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has led to more than 260 million confirmed infections and 5 million deaths to date. While vaccination is a powerful tool to control pandemic spread, medication to relieve COVID-19-associated symptoms and alleviate disease progression especially in high-risk patients is still lacking. In this study, we explore the suitability of the rapid accelerated fibrosarcoma/mitogen-activated protein kinase/extracellular signal-regulated kinase (Raf/MEK/ERK) pathway as a druggable target in the treatment of SARS-CoV-2 infections. We find that SARS-CoV-2 transiently activates Raf/MEK/ERK signaling in the very early infection phase and that ERK1/2 knockdown limits virus replication in cell culture models. We demonstrate that ATR-002, a specific inhibitor of the upstream MEK1/2 kinases which is currently evaluated in clinical trials as an anti-influenza drug, displays strong anti-SARS-CoV-2 activity in cell lines as well as in primary air-liquid-interphase epithelial cell (ALI) cultures, with a safe and selective treatment window. We also observe that ATR-002 treatment impairs the SARS-CoV-2-induced expression of pro-inflammatory cytokines, and thus might prevent COVID-19-associated hyperinflammation, a key player in COVID-19 progression. Thus, our data suggest that the Raf/MEK/ERK signaling cascade may represent a target for therapeutic intervention strategies against SARS-CoV-2 infections and that ATR-002 is a promising candidate for further drug evaluation.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Fenamatos/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , SARS-CoV-2/efeitos dos fármacos , Células A549 , Adulto , Animais , COVID-19/metabolismo , Linhagem Celular , Células Cultivadas , Chlorocebus aethiops , Citocinas/metabolismo , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , MAP Quinase Quinase 1/antagonistas & inibidores , MAP Quinase Quinase 1/metabolismo , MAP Quinase Quinase 2/antagonistas & inibidores , MAP Quinase Quinase 2/metabolismo , SARS-CoV-2/fisiologia , Células Vero , Replicação Viral/efeitos dos fármacos
17.
Gigascience ; 122022 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-37132521

RESUMO

BACKGROUND: Eukaryotic gene expression is controlled by cis-regulatory elements (CREs), including promoters and enhancers, which are bound by transcription factors (TFs). Differential expression of TFs and their binding affinity at putative CREs determine tissue- and developmental-specific transcriptional activity. Consolidating genomic datasets can offer further insights into the accessibility of CREs, TF activity, and, thus, gene regulation. However, the integration and analysis of multimodal datasets are hampered by considerable technical challenges. While methods for highlighting differential TF activity from combined chromatin state data (e.g., chromatin immunoprecipitation [ChIP], ATAC, or DNase sequencing) and RNA sequencing data exist, they do not offer convenient usability, have limited support for large-scale data processing, and provide only minimal functionality for visually interpreting results. RESULTS: We developed TF-Prioritizer, an automated pipeline that prioritizes condition-specific TFs from multimodal data and generates an interactive web report. We demonstrated its potential by identifying known TFs along with their target genes, as well as previously unreported TFs active in lactating mouse mammary glands. Additionally, we studied a variety of ENCODE datasets for cell lines K562 and MCF-7, including 12 histone modification ChIP sequencing as well as ATAC and DNase sequencing datasets, where we observe and discuss assay-specific differences. CONCLUSION: TF-Prioritizer accepts ATAC, DNase, or ChIP sequencing and RNA sequencing data as input and identifies TFs with differential activity, thus offering an understanding of genome-wide gene regulation, potential pathogenesis, and therapeutic targets in biomedical research.


Assuntos
Lactação , Fatores de Transcrição , Animais , Camundongos , Feminino , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Indonésia , Sítios de Ligação/genética , Desoxirribonucleases/metabolismo
18.
Nat Commun ; 12(1): 6871, 2021 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-34836955

RESUMO

Several effective SARS-CoV-2 vaccines are currently in use, but effective boosters are needed to maintain or increase immunity due to waning responses and the emergence of novel variants. Here we report that intranasal vaccinations with adenovirus 5 and 19a vectored vaccines following a systemic plasmid DNA or mRNA priming result in systemic and mucosal immunity in mice. In contrast to two intramuscular applications of an mRNA vaccine, intranasal boosts with adenoviral vectors induce high levels of mucosal IgA and lung-resident memory T cells (TRM); mucosal neutralization of virus variants of concern is also enhanced. The mRNA prime provokes a comprehensive T cell response consisting of circulating and lung TRM after the boost, while the plasmid DNA prime induces mostly mucosal T cells. Concomitantly, the intranasal boost strategies lead to complete protection against a SARS-CoV-2 infection in mice. Our data thus suggest that mucosal booster immunizations after mRNA priming is a promising approach to establish mucosal immunity in addition to systemic responses.


Assuntos
Vacinas contra COVID-19/imunologia , COVID-19/prevenção & controle , Imunidade nas Mucosas , Imunização Secundária/métodos , SARS-CoV-2/imunologia , Adenoviridae/genética , Administração Intranasal , Animais , Anticorpos Antivirais/imunologia , Vacinas contra COVID-19/administração & dosagem , Vacinas contra COVID-19/genética , Vetores Genéticos , Esquemas de Imunização , Imunogenicidade da Vacina , Células T de Memória/imunologia , Camundongos , Vacinas de DNA/administração & dosagem , Vacinas de DNA/genética , Vacinas de DNA/imunologia , Vacinas de mRNA/administração & dosagem , Vacinas de mRNA/imunologia
19.
Proc Natl Acad Sci U S A ; 118(43)2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34635581

RESUMO

The host cell serine protease TMPRSS2 is an attractive therapeutic target for COVID-19 drug discovery. This protease activates the Spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and of other coronaviruses and is essential for viral spread in the lung. Utilizing rational structure-based drug design (SBDD) coupled to substrate specificity screening of TMPRSS2, we have discovered covalent small-molecule ketobenzothiazole (kbt) TMPRSS2 inhibitors which are structurally distinct from and have significantly improved activity over the existing known inhibitors Camostat and Nafamostat. Lead compound MM3122 (4) has an IC50 (half-maximal inhibitory concentration) of 340 pM against recombinant full-length TMPRSS2 protein, an EC50 (half-maximal effective concentration) of 430 pM in blocking host cell entry into Calu-3 human lung epithelial cells of a newly developed VSV-SARS-CoV-2 chimeric virus, and an EC50 of 74 nM in inhibiting cytopathic effects induced by SARS-CoV-2 virus in Calu-3 cells. Further, MM3122 blocks Middle East respiratory syndrome coronavirus (MERS-CoV) cell entry with an EC50 of 870 pM. MM3122 has excellent metabolic stability, safety, and pharmacokinetics in mice, with a half-life of 8.6 h in plasma and 7.5 h in lung tissue, making it suitable for in vivo efficacy evaluation and a promising drug candidate for COVID-19 treatment.


Assuntos
Benzotiazóis/farmacologia , Tratamento Farmacológico da COVID-19 , Oligopeptídeos/farmacologia , SARS-CoV-2/efeitos dos fármacos , Serina Endopeptidases/genética , Animais , Benzamidinas/química , Benzotiazóis/farmacocinética , COVID-19/genética , COVID-19/virologia , Linhagem Celular , Desenho de Fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/virologia , Ésteres/química , Guanidinas/química , Humanos , Pulmão/efeitos dos fármacos , Pulmão/virologia , Camundongos , Coronavírus da Síndrome Respiratória do Oriente Médio/efeitos dos fármacos , Coronavírus da Síndrome Respiratória do Oriente Médio/patogenicidade , Oligopeptídeos/farmacocinética , SARS-CoV-2/patogenicidade , Serina Endopeptidases/efeitos dos fármacos , Serina Endopeptidases/ultraestrutura , Bibliotecas de Moléculas Pequenas/farmacologia , Especificidade por Substrato/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos
20.
Viruses ; 13(6)2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34207440

RESUMO

Human papillomaviruses (HPV) cause a subset of head and neck cancers (HNSCC). HPV16 predominantly signs responsible for approximately 10% of all HNSCC and over 50% of tonsillar (T)SCCs. Prevalence rates depend on several factors, such as the geographical region where patients live, possibly due to different social and sexual habits. Smoking plays an important role, with non-smoking patients being mostly HPV-positive and smokers being mostly HPV-negative. This is of unparalleled clinical relevance, as the outcome of (non-smoking) HPV-positive patients is significantly better, albeit with standard and not with de-escalated therapies. The results of the first prospective de-escalation studies have dampened hopes that similar superior survival can be achieved with de-escalated therapy. In this context, it is important to note that the inclusion of p16INK4A (a surrogate marker for HPV-positivity) in the 8th TMN-classification has only prognostic, not therapeutic, intent. To avoid misclassification, highest precision in determining HPV-status is of utmost importance. Whenever possible, PCR-based methods, still referred to as the "gold standard", should be used. New diagnostic antibodies represent some hope, e.g., to detect primaries and recurrences early. Prophylactic HPV vaccination should lead to a decline in HPV-driven HNSCC as well. This review discusses the above aspects in detail.


Assuntos
Alphapapillomavirus/patogenicidade , Neoplasias de Cabeça e Pescoço/virologia , Infecções por Papillomavirus/complicações , Alphapapillomavirus/classificação , Biomarcadores Tumorais , Carcinoma de Células Escamosas/virologia , DNA Viral/genética , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Prognóstico , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA