Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
iScience ; 27(8): 110466, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39156645

RESUMO

Solvatochromic compounds have emerged as valuable environment-sensitive probes for biological research. Here we used thiol-reactive solvatochromic analogs of the green fluorescent protein (GFP) chromophore to track conformational changes in two proteins, recoverin and the A2A adenosine receptor (A2AAR). Two dyes showed Ca2+-induced fluorescence changes when attached to recoverin. Our best-performing dye, DyeC, exhibited agonist-induced changes in both intensity and shape of its fluorescence spectrum when attached to A2AAR; none of these effects were observed with other common environment-sensitive dyes. Molecular dynamics simulations showed that activation of the A2AAR led to a more confined and hydrophilic environment for DyeC. Additionally, an allosteric modulator of A2AAR induced distinct fluorescence changes in the DyeC spectrum, indicating a unique receptor conformation. Our study demonstrated that GFP-inspired dyes are effective for detecting structural changes in G protein-coupled receptors (GPCRs), offering advantages such as intensity-based and ratiometric tracking, redshifted fluorescence spectra, and sensitivity to allosteric modulation.

2.
J Mol Biol ; 435(23): 168310, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37806553

RESUMO

G protein-coupled receptors (GPCRs) form the largest superfamily of membrane proteins in the human genome, and represent one of the most important classes of drug targets. Their structural studies facilitate rational drug discovery. However, atomic structures of only about 20% of human GPCRs have been solved to date. Recombinant production of GPCRs for structural studies at a large scale is challenging due to their low expression levels and stability. Therefore, in this study, we explored the efficacy of the eukaryotic system LEXSY (Leishmania tarentolae) for GPCR production. We selected the human A2A adenosine receptor (A2AAR), as a model protein, expressed it in LEXSY, purified it, and compared with the same receptor produced in insect cells, which is the most popular expression system for structural studies of GPCRs. The A2AAR purified from both expression systems showed similar purity, stability, ligand-induced conformational changes and structural dynamics, with a remarkably higher protein yield in the case of LEXSY expression. Overall, our results suggest that LEXSY is a promising platform for large-scale production of GPCRs for structural studies.


Assuntos
Receptor A2A de Adenosina , Receptores Acoplados a Proteínas G , Proteínas Recombinantes , Humanos , Descoberta de Drogas , Receptores Acoplados a Proteínas G/biossíntese , Receptores Acoplados a Proteínas G/química , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Leishmania , Receptor A2A de Adenosina/biossíntese , Receptor A2A de Adenosina/química , Conformação Proteica , Ligantes , Estabilidade Proteica
3.
iScience ; 26(8): 107327, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37539031

RESUMO

Clathrin assembles at the cells' plasma membrane in a multitude of clathrin-coated structures (CCSs). Among these are flat clathrin lattices (FCLs), alternative clathrin structures that have been found in specific cell types, including cancer cells. Here we show that these structures are also present in different colorectal cancer (CRC) cell lines, and that they are extremely stable with lifetimes longer than 8 h. By combining cell models representative of CRC metastasis with advanced fluorescence imaging and analysis, we discovered that the metastatic potential of CRC is associated with an aberrant membranous clathrin distribution, resulting in a higher prevalence of FCLs in cells with a higher metastatic potential. These findings suggest that clathrin organization might play an important yet unexplored role in cancer metastasis.

4.
Nanomaterials (Basel) ; 13(9)2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37177071

RESUMO

Inorganic chiral nanoparticles are attracting more and more attention due to their peculiar optical properties and potential biological applications, such as bioimaging, therapeutics, and diagnostics. Among inorganic chiral nanoparticles, gold chiral nanostructures were demonstrated to be very interesting in this context, with good physical chemical stability and also the possibility to decorate the surface, improving biomedical application as the interaction with the bio-systems. Gold (Au) nanostructures were synthesized according to a seed-mediated procedure which envisages the use of cetyltrimethylammonium bromide (CTAB) as the capping agent and L- and D-cysteine to promote chirality. Au nanostructures have been demonstrated to have opposite circular dichroism signals depending on the amino acid enantiomer used during the synthesis. Then, a procedure to decorate the Au surface with penicillamine, a drug used for the treatment of Wilson's disease, was developed. The composite material of gold nanoparticles/penicillamine was characterized using electron microscopy, and the penicillamine functionalization was monitored by means of UV-Visible, Raman, and infrared spectroscopy, highlighting the formation of the Au-S bond. Furthermore, electron circular dichroism was used to monitor the chirality of the synthesized nanostructures and it was demonstrated that both penicillamine enantiomers can be successfully bonded with both the enantiomers of the gold nanostructures without affecting gold nanoparticles' chirality. The effective modification of nanostructures' surfaces via penicillamine introduction allowed us to address the important issue of controlling chirality and surface properties in the chiral nano-system.

5.
Commun Biol ; 6(1): 362, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-37012383

RESUMO

The complex pharmacology of G-protein-coupled receptors (GPCRs) is defined by their multi-state conformational dynamics. Single-molecule Förster Resonance Energy Transfer (smFRET) is well suited to quantify dynamics for individual protein molecules; however, its application to GPCRs is challenging. Therefore, smFRET has been limited to studies of inter-receptor interactions in cellular membranes and receptors in detergent environments. Here, we performed smFRET experiments on functionally active human A2A adenosine receptor (A2AAR) molecules embedded in freely diffusing lipid nanodiscs to study their intramolecular conformational dynamics. We propose a dynamic model of A2AAR activation that involves a slow (>2 ms) exchange between the active-like and inactive-like conformations in both apo and antagonist-bound A2AAR, explaining the receptor's constitutive activity. For the agonist-bound A2AAR, we detected faster (390 ± 80 µs) ligand efficacy-dependent dynamics. Our work establishes a general smFRET platform for GPCR investigations that can potentially be used for drug screening and/or mechanism-of-action studies.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Receptor A2A de Adenosina , Humanos , Receptor A2A de Adenosina/metabolismo , Conformação Molecular , Membrana Celular/metabolismo , Proteínas/metabolismo
6.
Angew Chem Int Ed Engl ; 62(27): e202218122, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37081751

RESUMO

Competition from hydrogen/oxygen evolution reactions and low solubility of N2 in aqueous systems limited the selectivity and activity on nitrogen fixation reaction. Herein, we design an aerobic-hydrophobic Janus structure by introducing fluorinated modification on porous carbon nanofibers embedded with partially carbonized iron heterojunctions (Fe3 C/Fe@PCNF-F). The simulations prove that the Janus structure can keep the internal Fe3 C/Fe@PCNF-F away from water infiltration and endow a N2 molecular-concentrating effect, suppressing the competing reactions and overcoming the mass-transfer limitations to build a robust "quasi-solid-gas" state micro-domain around the catalyst surface. In this proof-of-concept system, the Fe3 C/Fe@PCNF-F exhibits excellent electrocatalytic performance for nitrogen fixation (NH3 yield rate up to 29.2 µg h-1 mg-1 cat. and Faraday efficiency (FE) up to 27.8 % in nitrogen reduction reaction; NO3 - yield rate up to 15.7 µg h-1 mg-1 cat. and FE up to 3.4 % in nitrogen oxidation reaction).

7.
Cell Mol Life Sci ; 80(4): 93, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36929461

RESUMO

Multicellular tumor spheroids are rapidly emerging as an improved in vitro model with respect to more traditional 2D culturing. Microwell culturing is a simple and accessible method for generating a large number of uniformly sized spheroids, but commercially available systems often do not enable researchers to perform complete culturing and analysis pipelines and the mechanical properties of their culture environment are not commonly matching those of the target tissue. We herein report a simple method to obtain custom-designed self-built microwell arrays made of polydimethylsiloxane or agarose for uniform 3D cell structure generation. Such materials can provide an environment of tunable mechanical flexibility. We developed protocols to culture a variety of cancer and non-cancer cell lines in such devices and to perform molecular and imaging characterizations of the spheroid growth, viability, and response to pharmacological treatments. Hundreds of tumor spheroids grow (in scaffolded or scaffold-free conditions) at homogeneous rates and can be harvested at will. Microscopy imaging can be performed in situ during or at the end of the culture. Fluorescence (confocal) microscopy can be performed after in situ staining while retaining the geographic arrangement of spheroids in the plate wells. This platform can enable statistically robust investigations on cancer biology and screening of drug treatments.


Assuntos
Neoplasias , Esferoides Celulares , Humanos , Linhagem Celular , Linhagem Celular Tumoral
8.
Nucleic Acids Res ; 50(17): e100, 2022 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-35716125

RESUMO

Interactions between epigenetic readers and histone modifications play a pivotal role in gene expression regulation and aberrations can enact etiopathogenic roles in both developmental and acquired disorders like cancer. Typically, epigenetic interactions are studied by mass spectrometry or chromatin immunoprecipitation sequencing. However, in these methods, spatial information is completely lost. Here, we devise an expansion microscopy based method, termed Expansion Microscopy for Epigenetics or ExEpi, to preserve spatial information and improve resolution. We calculated relative co-localization ratios for two epigenetic readers, lens epithelium derived growth factor (LEDGF) and bromodomain containing protein 4 (BRD4), with marks for heterochromatin (H3K9me3 and H3K27me3) and euchromatin (H3K36me2, H3K36me3 and H3K9/14ac). ExEpi confirmed their preferred epigenetic interactions, showing co-localization for LEDGF with H3K36me3/me2 and for BRD4 with H3K9/14ac. Moreover addition of JQ1, a known BET-inhibitor, abolished BRD4 interaction with H3K9/14ac with an IC50 of 137 nM, indicating ExEpi could serve as a platform for epigenetic drug discovery. Since ExEpi retains spatial information, the nuclear localization of marks and readers was determined, which is one of the main advantages of ExEpi. The heterochromatin mark, H3K9me3, is located in the nuclear rim whereas LEDGF co-localization with H3K36me3 and BRD4 co-localization with H3K9/14ac occur further inside the nucleus.


Assuntos
Código das Histonas , Análise de Célula Única , Epigênese Genética , Eucromatina , Heterocromatina/genética , Histonas/genética , Histonas/metabolismo , Microscopia , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo
9.
Br J Cancer ; 126(11): 1604-1615, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35347323

RESUMO

BACKGROUND: Liver metastasis is the primary cause of colorectal cancer (CRC)-associated death. Aryl-hydrocarbon receptor-interacting protein (AIP), a putative positive intermediary in aryl-hydrocarbon receptor-mediated signalling, is overexpressed in highly metastatic human KM12SM CRC cells and other highly metastatic CRC cells. METHODS: Meta-analysis and immunohistochemistry were used to assess the relevance of AIP. Cellular functions and signalling mechanisms mediated by AIP were assessed by gain-of-function experiments and in vitro and in vivo experiments. RESULTS: A significant association of high AIP expression with poor CRC patients' survival was observed. Gain-of-function and quantitative proteomics experiments demonstrated that AIP increased tumorigenic and metastatic properties of isogenic KM12C (poorly metastatic) and KM12SM (highly metastatic to the liver) CRC cells. AIP overexpression dysregulated epithelial-to-mesenchymal (EMT) markers and induced several transcription factors and Cadherin-17 activation. The former induced the signalling activation of AKT, SRC and JNK kinases to increase adhesion, migration and invasion of CRC cells. In vivo, AIP expressing KM12 cells induced tumour growth and liver metastasis. Furthermore, KM12C (poorly metastatic) cells ectopically expressing AIP became metastatic to the liver. CONCLUSIONS: Our data reveal new roles for AIP in regulating proteins associated with cancer and metastasis to induce tumorigenic and metastatic properties in colon cancer cells driving liver metastasis.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Neoplasias Hepáticas , Neoplasias Retais , Carcinogênese/genética , Linhagem Celular Tumoral , Movimento Celular , Neoplasias Colorretais/patologia , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Humanos , Hidrocarbonetos , Imuno-Histoquímica , Neoplasias Hepáticas/secundário , Metástase Neoplásica
10.
Cells ; 11(3)2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-35159257

RESUMO

Metastasis is the primary cause of colorectal cancer (CRC) death. The liver and lung, besides adjacent lymph nodes, are the most common sites of metastasis. Here, we aimed to study the lymph nodes, liver, and lung CRC metastasis by quantitative spatial proteomics analysis using CRC cell-based models that recapitulate these metastases. The isogenic KM12 cell system composed of the non-metastatic KM12C cells, liver metastatic KM12SM cells, and liver and lung metastatic KM12L4a cells, and the isogenic non-metastatic SW480 and lymph nodes metastatic SW620 cells, were used. Cells were fractionated to study by proteomics five subcellular fractions corresponding to cytoplasm, membrane, nucleus, chromatin-bound proteins, and cytoskeletal proteins, and the secretome. Trypsin digested extracts were labeled with TMT 11-plex and fractionated prior to proteomics analysis on a Q Exactive. We provide data on protein abundance and localization of 4710 proteins in their different subcellular fractions, depicting dysregulation of proteins in abundance and/or localization in the most common sites of CRC metastasis. After bioinformatics, alterations in abundance and localization for selected proteins from diverse subcellular localizations were validated via WB, IF, IHC, and ELISA using CRC cells, patient tissues, and plasma samples. Results supported the relevance of the proteomics results in an actual CRC scenario. It was particularly relevant that the measurement of GLG1 in plasma showed diagnostic ability of advanced stages of the disease, and that the mislocalization of MUC5AC and BAIAP2 in the nucleus and membrane, respectively, was significantly associated with poor prognosis of CRC patients. Our results demonstrate that the analysis of cell extracts dilutes protein alterations in abundance in specific localizations that might only be observed studying specific subcellular fractions, as here observed for BAIAP2, GLG1, PHYHIPL, TNFRSF10A, or CDKN2AIP, which are interesting proteins that should be further analyzed in CRC metastasis.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Neoplasias Pulmonares , Neoplasias Retais , Neoplasias Colorretais/patologia , Humanos , Fígado/metabolismo , Linfonodos/patologia , Proteômica/métodos
11.
Pharmaceutics ; 13(12)2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34959436

RESUMO

The application of antibodies in nanomedicine is now standard practice in research since it represents an innovative approach to deliver chemotherapy agents selectively to tumors. The variety of targets or markers that are overexpressed in different types of cancers results in a high demand for antibody conjugated-nanoparticles, which are versatile and easily customizable. Considering up-scaling, the synthesis of antibody-conjugated nanoparticles should be simple and highly reproducible. Here, we developed a facile coating strategy to produce antibody-conjugated nanoparticles using 'click chemistry' and further evaluated their selectivity towards cancer cells expressing different markers. Our approach was consistently repeated for the conjugation of antibodies against CD44 and EGFR, which are prominent cancer cell markers. The functionalized particles presented excellent cell specificity towards CD44 and EGFR overexpressing cells, respectively. Our results indicated that the developed coating method is reproducible, versatile, and non-toxic, and can be used for particle functionalization with different antibodies. This grafting strategy can be applied to a wide range of nanoparticles and will contribute to the development of future targeted drug delivery systems.

12.
Pharmaceutics ; 13(2)2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33673228

RESUMO

Recently, it was proposed that the thiophene ring is capable of promoting mitochondrial accumulation when linked to fluorescent markers. As a noncharged group, thiophene presents several advantages from a synthetic point of view, making it easier to incorporate such a side moiety into different molecules. Herein, we confirm the general applicability of the thiophene group as a mitochondrial carrier for drugs and fluorescent markers based on a new concept of nonprotonable, noncharged transporter. We implemented this concept in a medicinal chemistry application by developing an antitumor, metabolic chimeric drug based on the pyruvate dehydrogenase kinase (PDHK) inhibitor dichloroacetate (DCA). The promising features of the thiophene moiety as a noncharged carrier for targeting mitochondria may represent a starting point for the design of new metabolism-targeting drugs.

13.
Biophys J ; 119(10): 2127-2137, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33096081

RESUMO

Asymmetric dimer formation of epidermal growth factor receptor (EGFR) is crucial for EGF-induced receptor activation. Even though autophosphorylation is important for activation, its role remains elusive in the context of regulating dimers. In this study, employing overlapping time series analysis to raster image correlation spectroscopy (RICS), we observed time-dependent transient dynamics of EGFR dimerization and found EGFR kinase activity to be essential for dimerization. As a result of which, we hypothesized that phosphorylation could influence dimerization. Evaluating this point, we observed that one of the tyrosine residues (Y954) located in the C-terminal lobe of the activator kinase domain was important to potentiate dimerization. Functional imaging to monitor Ca2+ and ERK signals revealed a significant role of Y954 in influencing downstream signaling cascade. Crucial for stabilization of EGFR asymmetric dimer is a "latch" formed between kinase domains of the binding partners. Because Y954 is positioned adjacent to the latch binding region on the kinase domain, we propose that phosphorylation strengthened the latch interaction. On the contrary, we identified that threonine phosphorylation (T669) in the latch domain negatively regulated EGFR dimerization and the downstream signals. Overall, we have delineated the previously anonymous role of phosphorylation at the latch interface of kinase domains in regulating EGFR dimerization.


Assuntos
Receptores ErbB , Transdução de Sinais , Dimerização , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/metabolismo , Fosforilação , Tirosina/metabolismo
14.
Nanoscale ; 12(42): 21951, 2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-33112320

RESUMO

Correction for 'FRET-based intracellular investigation of nanoprodrugs toward highly efficient anticancer drug delivery' by Farsai Taemaitree et al., Nanoscale, 2020, 12, 16710-16715, DOI: 10.1039/D0NR04910G.

15.
Nanoscale ; 12(32): 16710-16715, 2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32785392

RESUMO

In order to overcome unpredictable side-effects and increased cytotoxicity of conventional carrier-based anticancer drug delivery systems, several systems that consist exclusively of the pure drug (or prodrug) have been proposed. The behavior and dynamics of these systems after entering cancer cells are, however, still unknown, hindering their progress towards in vivo and clinical applications. Here, we report a comprehensive in cellulo study of carrier-free SN-38 nanoprodrugs (NPDs), previously developed by our group. The work shows the intracellular uptake, localization, and degradation of the NPDs via FRET microscopy. Accordingly, new FRET-NPDs were chemically synthesized and characterized. Prodrug to drug conversion and therapeutic efficiency were also validated. Our work provides crucial information for the application of NPDs as drug delivery systems and demonstrates their outstanding potential as next-generation anticancer nanomedicines.


Assuntos
Antineoplásicos , Pró-Fármacos , Sistemas de Liberação de Medicamentos , Transferência Ressonante de Energia de Fluorescência , Nanomedicina
16.
Nat Chem Biol ; 16(8): 834-840, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32393900

RESUMO

Bifunctional Rel stringent factors, the most abundant class of RelA/SpoT homologs, are ribosome-associated enzymes that transfer a pyrophosphate from ATP onto the 3' of guanosine tri-/diphosphate (GTP/GDP) to synthesize the bacterial alarmone (p)ppGpp, and also catalyze the 3' pyrophosphate hydrolysis to degrade it. The regulation of the opposing activities of Rel enzymes is a complex allosteric mechanism that remains an active research topic despite decades of research. We show that a guanine-nucleotide-switch mechanism controls catalysis by Thermus thermophilus Rel (RelTt). The binding of GDP/ATP opens the N-terminal catalytic domains (NTD) of RelTt (RelTtNTD) by stretching apart the two catalytic domains. This activates the synthetase domain and allosterically blocks hydrolysis. Conversely, binding of ppGpp to the hydrolase domain closes the NTD, burying the synthetase active site and precluding the binding of synthesis precursors. This allosteric mechanism is an activity switch that safeguards against futile cycles of alarmone synthesis and degradation.


Assuntos
Proteínas Proto-Oncogênicas c-rel/genética , Proteínas Proto-Oncogênicas c-rel/metabolismo , Sequência de Aminoácidos , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Regulação Bacteriana da Expressão Gênica/genética , Genes rel/genética , Guanosina Pentafosfato/metabolismo , Guanosina Tetrafosfato/metabolismo , Hidrolases/metabolismo , Ligases/metabolismo , Ligases/fisiologia , Nucleotídeos/metabolismo , Ribossomos/metabolismo , Thermus thermophilus/enzimologia , Thermus thermophilus/metabolismo
17.
Chem Commun (Camb) ; 56(22): 3317-3320, 2020 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-32077874

RESUMO

In this work, the preparation of new S-adenosyl-l-methionine (SAM) analogues for sequence specific DNA labeling is evaluated. These non-natural analogues, comprising cysteine rather than the natural homolog, were obtained in near quantitative conversions from readily available starting materials without relying on using an excess amount of labor intensive molecules. The synthetic strategy was used to generate fluorescent cofactors, with colours spanning the whole visible spectrum, and their applicability in methyltransferase based optical mapping is shown.


Assuntos
DNA/metabolismo , Metiltransferases/metabolismo , S-Adenosilmetionina/metabolismo , DNA/química , Corantes Fluorescentes/química , Plasmídeos/genética , Plasmídeos/metabolismo , S-Adenosilmetionina/análogos & derivados
18.
Structure ; 27(1): 90-101.e6, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30471924

RESUMO

SecA converts ATP energy to protein translocation work. Together with the membrane-embedded SecY channel it forms the bacterial protein translocase. How secretory proteins bind to SecA and drive conformational cascades to promote their secretion remains unknown. To address this, we focus on the preprotein binding domain (PBD) of SecA. PBD crystalizes in three distinct states, swiveling around its narrow stem. Here, we examined whether PBD displays intrinsic dynamics in solution using single-molecule Förster resonance energy transfer (smFRET). Unique cysteinyl pairs on PBD and apposed domains were labeled with donor/acceptor dyes. Derivatives were analyzed using pulsed interleaved excitation and multi-parameter fluorescence detection. The PBD undergoes significant rotational motions, occupying at least three distinct states in dimeric and four in monomeric soluble SecA. Nucleotides do not affect smFRET-detectable PBD dynamics. These findings lay the foundations for single-molecule dissection of translocase mechanics and suggest models for possible PBD involvement during catalysis.


Assuntos
Proteínas de Escherichia coli/química , Simulação de Dinâmica Molecular , Proteínas SecA/química , Sítios de Ligação , Proteínas de Escherichia coli/metabolismo , Transferência Ressonante de Energia de Fluorescência , Nucleotídeos/química , Nucleotídeos/metabolismo , Ligação Proteica , Proteínas SecA/metabolismo
19.
mBio ; 9(4)2018 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-30108166

RESUMO

Bacterial populations harbor a small fraction of cells that display transient multidrug tolerance. These so-called persister cells are extremely difficult to eradicate and contribute to the recalcitrance of chronic infections. Several signaling pathways leading to persistence have been identified. However, it is poorly understood how the effectors of these pathways function at the molecular level. In a previous study, we reported that the conserved GTPase Obg induces persistence in Escherichia coli via transcriptional upregulation of the toxin HokB. In the present study, we demonstrate that HokB inserts in the cytoplasmic membrane where it forms pores. The pore-forming capacity of the HokB peptide is demonstrated by in vitro conductance measurements on synthetic and natural lipid bilayers, revealing an asymmetrical conductance profile. Pore formation is directly linked to persistence and results in leakage of intracellular ATP. HokB-induced persistence is strongly impeded in the presence of a channel blocker, thereby providing a direct link between pore functioning and persistence. Furthermore, the activity of HokB pores is sensitive to the membrane potential. This sensitivity presumably results from the formation of either intermediate or mature pore types depending on the membrane potential. Taken together, these results provide a detailed view on the mechanistic basis of persister formation through the effector HokB.IMPORTANCE There is increasing awareness of the clinical importance of persistence. Indeed, persistence is linked to the recalcitrance of chronic infections, and evidence is accumulating that persister cells constitute a pool of viable cells from which resistant mutants can emerge. Unfortunately, persistence is a poorly understood process at the mechanistic level. In this study, we unraveled the pore-forming activity of HokB in E. coli and discovered that these pores lead to leakage of intracellular ATP, which is correlated with the induction of persistence. Moreover, we established a link between persistence and pore activity, as the number of HokB-induced persister cells was strongly reduced using a channel blocker. The latter opens opportunities to reduce the number of persister cells in a clinical setting.


Assuntos
Trifosfato de Adenosina/metabolismo , Toxinas Bacterianas/metabolismo , Membrana Celular/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/fisiologia , Porinas/metabolismo , Tolerância a Medicamentos
20.
Mol Cell ; 65(5): 885-899.e6, 2017 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-28238652

RESUMO

Loss of ER Ca2+ homeostasis triggers endoplasmic reticulum (ER) stress and drives ER-PM contact sites formation in order to refill ER-luminal Ca2+. Recent studies suggest that the ER stress sensor and mediator of the unfolded protein response (UPR) PERK regulates intracellular Ca2+ fluxes, but the mechanisms remain elusive. Here, using proximity-dependent biotin identification (BioID), we identified the actin-binding protein Filamin A (FLNA) as a key PERK interactor. Cells lacking PERK accumulate F-actin at the cell edges and display reduced ER-PM contacts. Following ER-Ca2+ store depletion, the PERK-FLNA interaction drives the expansion of ER-PM juxtapositions by regulating F-actin-assisted relocation of the ER-associated tethering proteins Stromal Interaction Molecule 1 (STIM1) and Extended Synaptotagmin-1 (E-Syt1) to the PM. Cytosolic Ca2+ elevation elicits rapid and UPR-independent PERK dimerization, which enforces PERK-FLNA-mediated ER-PM juxtapositions. Collectively, our data unravel an unprecedented role of PERK in the regulation of ER-PM appositions through the modulation of the actin cytoskeleton.


Assuntos
Citoesqueleto de Actina/enzimologia , Actinas/metabolismo , Membrana Celular/enzimologia , Estresse do Retículo Endoplasmático , Retículo Endoplasmático/enzimologia , Filaminas/metabolismo , eIF-2 Quinase/metabolismo , Animais , Cálcio/metabolismo , Sinalização do Cálcio , Filaminas/genética , Células HEK293 , Células HeLa , Humanos , Camundongos , Proteínas de Neoplasias/metabolismo , Multimerização Proteica , Transporte Proteico , Interferência de RNA , Transdução de Sinais , Molécula 1 de Interação Estromal/metabolismo , Sinaptotagmina I/metabolismo , Fatores de Tempo , Transfecção , Resposta a Proteínas não Dobradas , eIF-2 Quinase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA