Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(48): 26068-26074, 2023 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-37983562

RESUMO

[FeFe]-hydrogenases are efficient H2 converting biocatalysts that are inhibited by formaldehyde (HCHO). The molecular mechanism of this inhibition has so far not been experimentally solved. Here, we obtained high-resolution crystal structures of the HCHO-treated [FeFe]-hydrogenase CpI from Clostridium pasteurianum, showing HCHO reacts with the secondary amine base of the catalytic cofactor and the cysteine C299 of the proton transfer pathway which both are very important for catalytic turnover. Kinetic assays via protein film electrochemistry show the CpI variant C299D is significantly less inhibited by HCHO, corroborating the structural results. By combining our data from protein crystallography, site-directed mutagenesis and protein film electrochemistry, a reaction mechanism involving the cofactor's amine base, the thiol group of C299 and HCHO can be deduced. In addition to the specific case of [FeFe]-hydrogenases, our study provides additional insights into the reactions between HCHO and protein molecules.


Assuntos
Hidrogenase , Proteínas Ferro-Enxofre , Hidrogenase/química , Prótons , Catálise , Formaldeído/farmacologia , Aminas , Hidrogênio/química , Proteínas Ferro-Enxofre/química
2.
Biol Chem ; 404(7): 727-737, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37185095

RESUMO

The essential Escherichia coli ATPase MsbA is a lipid flippase that serves as a prototype for multi drug resistant ABC transporters. Its physiological function is the transport of lipopolisaccharides to build up the outer membranes of Gram-negative bacteria. Although several structural and biochemical studies of MsbA have been conducted previously, a detailed picture of the dynamic processes that link ATP hydrolysis to allocrit transport remains elusive. We report here for the first time time-resolved Fourier transform infrared (FTIR) spectroscopic measurements of the ATP binding and ATP hydrolysis reaction of full-length MsbA and determined reaction rates at 288 K of k 1 = 0.49 ± 0.28 s-1 and k 2 = 0.014 ± 0.003 s-1, respectively. We further verified these rates with photocaged NPEcgAppNHp where only nucleotide binding was observable and the negative mutant MsbA-H537A that showed slow hydrolysis (k 2 < 2 × 10-4 s-1). Besides single turnover kinetics, FTIR measurements also deliver IR signatures of all educts, products and the protein. ADP remains protein-bound after ATP hydrolysis. In addition, the spectral changes observed for the two variants MsbA-S378A and MsbA-S482A correlated with the loss of hydrogen bonding to the γ-phosphate of ATP. This study paves the way for FTIR-spectroscopic investigations of allocrite transport in full-length MsbA.


Assuntos
Proteínas de Bactérias , Proteínas de Escherichia coli , Proteínas de Bactérias/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Hidrólise , Trifosfato de Adenosina/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo
3.
Microbiol Spectr ; 9(1): e0047421, 2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34319142

RESUMO

The glutathione S-transferases carried on the plasmid for the styrene-specific degradation pathway in the Actinobacterium Gordonia rubripertincta CWB2 were heterologously expressed in Escherichia coli. Both enzymes were purified via affinity chromatography and subjected to activity investigations. StyI and StyJ displayed activity toward the commonly used glutathione S-transferase model substrate 1-chloro-2,4-dinitrobenzene (CDNB) with Km values of 0.0682 ± 0.0074 and 2.0281 ± 0.1301 mM and Vmax values of 0.0158 ± 0.0002 and 0.348 ± 0.008 U mg-1 for StyI and StyJ, respectively. The conversion of the natural substrate styrene oxide to the intermediate (1-phenyl-2-hydroxyethyl)glutathione was detected for StyI with 48.3 ± 2.9 U mg-1. This elucidates one more step in the not yet fully resolved styrene-specific degradation pathway of Gordonia rubripertincta CWB2. A characterization of both purified enzymes adds more insight into the scarce research field of actinobacterial glutathione S-transferases. Moreover, a sequence and phylogenetic analysis puts both enzymes into a physiological and evolutionary context. IMPORTANCE Styrene is a toxic compound that is used at a large scale by industry for plastic production. Bacterial degradation of styrene is a possibility for bioremediation and pollution prevention. Intermediates of styrene derivatives degraded in the styrene-specific pathways are precursors for valuable chemical compounds. The pathway in Gordonia rubripertincta CWB2 has proven to accept a broader substrate range than other bacterial styrene degraders. The enzymes characterized in this study, distinguish CWB2s pathway from other known styrene degradation routes and thus might be the main key for its ability to produce ibuprofen from the respective styrene derivative. A biotechnological utilization of this cascade could lead to efficient and sustainable production of drugs, flavors, and fragrances. Moreover, research on glutathione metabolism in Actinobacteria is rare. Here, a characterization of two glutathione S-transferases of actinobacterial origin is presented, and the utilization of glutathione in the metabolism of an Actinobacterium is proven.


Assuntos
Actinobacteria/enzimologia , Actinobacteria/metabolismo , Glutationa Transferase/metabolismo , Glutationa/metabolismo , Estirenos/metabolismo , Actinobacteria/classificação , Actinobacteria/genética , Biotransformação , Compostos de Epóxi , Escherichia coli/genética , Glutationa Transferase/genética , Ibuprofeno , Filogenia , Plasmídeos
4.
Nat Commun ; 12(1): 756, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33531463

RESUMO

[FeFe]-hydrogenases are efficient H2-catalysts, yet upon contact with dioxygen their catalytic cofactor (H-cluster) is irreversibly inactivated. Here, we combine X-ray crystallography, rational protein design, direct electrochemistry, and Fourier-transform infrared spectroscopy to describe a protein morphing mechanism that controls the reversible transition between the catalytic Hox-state and the inactive but oxygen-resistant Hinact-state in [FeFe]-hydrogenase CbA5H of Clostridium beijerinckii. The X-ray structure of air-exposed CbA5H reveals that a conserved cysteine residue in the local environment of the active site (H-cluster) directly coordinates the substrate-binding site, providing a safety cap that prevents O2-binding and consequently, cofactor degradation. This protection mechanism depends on three non-conserved amino acids situated approximately 13 Å away from the H-cluster, demonstrating that the 1st coordination sphere chemistry of the H-cluster can be remote-controlled by distant residues.


Assuntos
Cristalografia por Raios X/métodos , Sítios de Ligação , Domínio Catalítico , Clostridium beijerinckii/enzimologia , Clostridium beijerinckii/patogenicidade , Eletroquímica , Cinética , Modelos Teóricos , Espectroscopia de Infravermelho com Transformada de Fourier
5.
J Am Chem Soc ; 141(44): 17721-17728, 2019 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-31609603

RESUMO

The [FeFe]-hydrogenases catalyze the uptake and evolution of hydrogen with unmatched speed at low overpotential. However, oxygen induces the degradation of the unique [6Fe-6S] cofactor within the active site, termed the H-cluster. We used X-ray structural analyses to determine possible modes of irreversible oxygen-driven inactivation. To this end, we exposed crystals of the [FeFe]-hydrogenase CpI from Clostridium pasteurianum to oxygen and quantitatively investigated the effects on the H-cluster structure over several time points using multiple data sets, while correlating it to decreases in enzyme activity. Our results reveal the loss of specific Fe atoms from both the diiron (2FeH) and the [4Fe-4S] subcluster (4FeH) of the H-cluster. Within the 2FeH, the Fe atom more distal to the 4FeH is strikingly more affected than the more proximal Fe atom. The 4FeH interconverts to a [2Fe-2S] cluster in parts of the population of active CpIADT, but not in crystals of the inactive apoCpI initially lacking the 2FeH. We thus propose two parallel processes: dissociation of the distal Fe atom and 4FeH interconversion. Both pathways appear to play major roles in the oxidative damage of [FeFe]-hydrogenases under electron-donor deprived conditions probed by our experimental setup.

6.
J Am Chem Soc ; 141(1): 472-481, 2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30545220

RESUMO

[FeFe] hydrogenases interconvert H2 into protons and electrons reversibly and efficiently. The active site H-cluster is composed of two sites: a unique [2Fe] subcluster ([2Fe]H) covalently linked via cysteine to a canonical [4Fe-4S] cluster ([4Fe-4S]H). Both sites are redox active and electron transfer is proton-coupled, such that the potential of the H-cluster lies very close to the H2 thermodynamic potential, which confers the enzyme with the ability to operate quickly in both directions without energy losses. Here, one of the cysteines coordinating [4Fe-4S]H (Cys362) in the [FeFe] hydrogenase from the green algae Chlamydomonas reinhardtii ( CrHydA1) was exchanged with histidine and the resulting C362H variant was shown to contain a [4Fe-4S] cluster with a more positive redox potential than the wild-type. The change in the [4Fe-4S] cluster potential resulted in a shift of the catalytic bias, diminishing the H2 production activity but giving significantly higher H2 oxidation activity, albeit with a 200 mV overpotential requirement. These results highlight the importance of the [4Fe-4S] cluster as an electron injection site, modulating the redox potential and the catalytic properties of the H-cluster.


Assuntos
Biocatálise , Hidrogenase/química , Hidrogenase/metabolismo , Ferro/metabolismo , Enxofre/metabolismo , Domínio Catalítico , Chlamydomonas reinhardtii/enzimologia , Hidrogenase/genética , Ligantes , Modelos Moleculares , Mutagênese Sítio-Dirigida , Oxirredução
7.
Sci Rep ; 6: 25119, 2016 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-27151361

RESUMO

Melanoma inhibitory activity (MIA), an extracellular protein highly expressed by malignant melanoma cells, plays an important functional role in melanoma development, progression, and metastasis. After its secretion, MIA directly interacts with extracellular matrix proteins, such as fibronectin (FN). By this mechanism, MIA actively facilitates focal cell detachment from surrounding structures and strongly promotes tumour cell invasion and migration. Hence, the molecular understanding of MIA's function provides a promising target for the development of new strategies in malignant melanoma therapy. Here, we describe for the first time the discovery of small molecules that are able to disrupt the MIA-FN complex by selectively binding to a new druggable pocket, which we could identify on MIA by structural analysis and fragment-based screening. Our findings may inspire novel drug discovery efforts aiming at a therapeutically effective treatment of melanoma by targeting MIA.


Assuntos
Antineoplásicos/isolamento & purificação , Proteínas da Matriz Extracelular/metabolismo , Fibronectinas/metabolismo , Proteínas de Neoplasias/metabolismo , Antineoplásicos/metabolismo , Descoberta de Drogas , Humanos , Ligação Proteica/efeitos dos fármacos
8.
Biochemistry ; 52(6): 1045-54, 2013 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-23331050

RESUMO

Tumor suppressor Nore1, its acronym coming from novel Ras effector, is one of the 10 members of the Rassf (Ras association domain family) protein family that have been identified. It is expressed as two mRNA splice variants, Nore1A and a shorter isoform, Nore1B. It forms homo- and heterocomplexes through its C-terminal SARAH (Sav/Rassf/Hpo) domain. The oligomeric state of Nore1 and other SARAH domain-containing proteins is important for their cellular activities. However, there are few experimental data addressing the structural and biophysical characterization of these domains. In this study, we show that the recombinant SARAH domain of Nore1 crystallizes as an antiparallel homodimer with representative characteristics of coiled coils. As is typical for coiled coils, the SARAH domain shows a heptad register, yet the heptad register is interrupted by two stutters. The comparisons of the heptad register of Nore1-SARAH with the primary structure of Rassf1-4, Rassf6, MST1, MST2, and WW45 indicate that these proteins have a heptad register interrupted by two stutters, too. Moreover, on the basis of the structure of Nore1-SARAH, we also generate structural models for Rassf1 and Rassf3. These models indicate that Rassf1- and Rassf3-SARAH form structures very similar to that of Nore1-SARAH. In addition, we show that, as we have previously found for MST1, the SARAH domain of Nore1 undergoes association-dependent folding. Nevertheless, the Nore1 homodimer has a lower affinity and thermodynamic stability than the MST1 homodimer, while the monomer is slightly more stable. Our experimental results along with our theoretical considerations indicate that the SARAH domain is merely a dimerization domain and that the differences between the individual sequences lead to different stabilities and affinities that might have an important functional role.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas de Ciclo Celular/química , Fator de Crescimento de Hepatócito/química , Proteínas Serina-Treonina Quinases/química , Proteínas Proto-Oncogênicas/química , Proteínas Supressoras de Tumor/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sequência de Aminoácidos , Animais , Proteínas Reguladoras de Apoptose , Proteínas de Ciclo Celular/metabolismo , Dicroísmo Circular , Dimerização , Fator de Crescimento de Hepatócito/metabolismo , Camundongos , Dados de Sequência Molecular , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas/metabolismo , Homologia de Sequência de Aminoácidos , Serina-Treonina Quinase 3 , Transdução de Sinais , Termodinâmica , Proteínas Supressoras de Tumor/metabolismo
9.
J Biol Chem ; 287(28): 23923-31, 2012 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-22593573

RESUMO

MsbA is an essential Escherichia coli ATP-binding cassette (ABC) transporter involved in the flipping of lipid A across the cytoplasmic membrane. It is a close homologue of human P-glycoprotein involved in multidrug resistance, and it similarly accepts a variety of small hydrophobic xenobiotics as transport substrates. X-ray structures of three full-length ABC multidrug exporters (including MsbA) have been published recently and reveal large conformational changes during the transport cycle. However, how ATP hydrolysis couples to these conformational changes and finally the transport is still an open question. We employed time-resolved FTIR spectroscopy, a powerful method to elucidate molecular reaction mechanisms of soluble and membrane proteins, to address this question with high spatiotemporal resolution. Here, we monitored the hydrolysis reaction in the nucleotide-binding domain of MsbA at the atomic level. The isolated MsbA nucleotide-binding domain hydrolyzed ATP with V(max) = 45 nmol mg(-1) min(-1), similar to the full-length transporter. A Hill coefficient of 1.49 demonstrates positive cooperativity between the two catalytic sites formed upon dimerization. Global fit analysis of time-resolved FTIR data revealed two apparent rate constants of ~1 and 0.01 s(-1), which were assigned to formation of the catalytic site and hydrolysis, respectively. Using isotopically labeled ATP, we identified specific marker bands for protein-bound ATP (1245 cm(-1)), ADP (1101 and 1205 cm(-1)), and free phosphate (1078 cm(-1)). Cleavage of the ß-phosphate-γ-phosphate bond was found to be the rate-limiting step; no protein-bound phosphate intermediate was resolved.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Proteínas de Bactérias/genética , Sítios de Ligação/genética , Transporte Biológico , Catálise , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Hidrólise , Cinética , Isótopos de Oxigênio , Fosfatos/metabolismo , Fatores de Tempo
10.
Biochem J ; 433(3): 469-76, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21050180

RESUMO

PEB (phycoerythrobilin) is a pink-coloured open-chain tetrapyrrole molecule found in the cyanobacterial light-harvesting phycobilisome. Within the phycobilisome, PEB is covalently bound via thioether bonds to conserved cysteine residues of the phycobiliprotein subunits. In cyanobacteria, biosynthesis of PEB proceeds via two subsequent two-electron reductions catalysed by the FDBRs (ferredoxin-dependent bilin reductases) PebA and PebB starting from the open-chain tetrapyrrole biliverdin IXα. A new member of the FDBR family has been identified in the genome of a marine cyanophage. In contrast with the cyanobacterial enzymes, PebS (PEB synthase) from cyanophages combines both two-electron reductions for PEB synthesis. In the present study we show that PebS acts via a substrate radical mechanism and that two conserved aspartate residues at position 105 and 206 are critical for stereospecific substrate protonation and conversion. On the basis of the crystal structures of both PebS mutants and presented biochemical and biophysical data, a mechanism for biliverdin IXα conversion to PEB is postulated and discussed with respect to other FDBR family members.


Assuntos
Bacteriófagos/enzimologia , Ficobilinas/biossíntese , Ficoeritrina/biossíntese , Transporte de Elétrons , Proteínas Virais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA