Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-32750869

RESUMO

The majority of clinical trials fail due to low efficacy of investigated drugs, often resulting from a poor choice of target protein. Existing computational approaches aim to support target selection either via genetic evidence or by putting potential targets into the context of a disease specific network reconstruction. The purpose of this work was to investigate whether network representation learning techniques could be used to allow for a machine learning based prioritization of putative targets. We propose a novel target prioritization approach, GuiltyTargets, which relies on attributed network representation learning of a genome-wide protein-protein interaction network annotated with disease-specific differential gene expression and uses positive-unlabeled (PU) machine learning for candidate ranking. We evaluated our approach on 12 datasets from six diseases of different type (cancer, metabolic, neurodegenerative) within a 10 times repeated 5-fold stratified cross-validation and achieved AUROC values between 0.92 - 0.97, significantly outperforming previous approaches that relied on manually engineered topological features. Moreover, we showed that GuiltyTargets allows for target repositioning across related disease areas. An application of GuiltyTargets to Alzheimer's disease resulted in a number of highly ranked candidates that are currently discussed as targets in the literature. Interestingly, one (COMT) is also the target of an approved drug (Tolcapone) for Parkinson's disease, highlighting the potential for target repositioning with our method. The GuiltyTargets Python package is available on PyPI and all code used for analysis can be found under the MIT License at https://github.com/GuiltyTargets. Attributed network representation learning techniques provide an interesting approach to effectively leverage the existing knowledge about the molecular mechanisms in different diseases. In this work, the combination with positive-unlabeled learning for target prioritization demonstrated a clear superiority compared to classical feature engineering approaches. Our work highlights the potential of attributed network representation learning for target prioritization. Given the overarching relevance of networks in computational biology we believe that attributed network representation learning techniques could have a broader impact in the future.


Assuntos
Biologia Computacional , Aprendizado de Máquina , Mapas de Interação de Proteínas/genética , Proteínas/genética
2.
NPJ Syst Biol Appl ; 7(1): 40, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34707117

RESUMO

The utility of pathway signatures lies in their capability to determine whether a specific pathway or biological process is dysregulated in a given patient. These signatures have been widely used in machine learning (ML) methods for a variety of applications including precision medicine, drug repurposing, and drug discovery. In this work, we leverage highly predictive ML models for drug response simulation in individual patients by calibrating the pathway activity scores of disease samples. Using these ML models and an intuitive scoring algorithm to modify the signatures of patients, we evaluate whether a given sample that was formerly classified as diseased, could be predicted as normal following drug treatment simulation. We then use this technique as a proxy for the identification of potential drug candidates. Furthermore, we demonstrate the ability of our methodology to successfully identify approved and clinically investigated drugs for four different cancers, outperforming six comparable state-of-the-art methods. We also show how this approach can deconvolute a drugs' mechanism of action and propose combination therapies. Taken together, our methodology could be promising to support clinical decision-making in personalized medicine by simulating a drugs' effect on a given patient.


Assuntos
Fenômenos Biológicos , Aprendizado de Máquina , Algoritmos , Simulação por Computador , Humanos , Medicina de Precisão
3.
EPMA J ; 12(3): 243-264, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34422142

RESUMO

An increasing interest in a healthy lifestyle raises questions about optimal body weight. Evidently, it should be clearly discriminated between the standardised "normal" body weight and individually optimal weight. To this end, the basic principle of personalised medicine "one size does not fit all" has to be applied. Contextually, "normal" but e.g. borderline body mass index might be optimal for one person but apparently suboptimal for another one strongly depending on the individual genetic predisposition, geographic origin, cultural and nutritional habits and relevant lifestyle parameters-all included into comprehensive individual patient profile. Even if only slightly deviant, both overweight and underweight are acknowledged risk factors for a shifted metabolism which, if being not optimised, may strongly contribute to the development and progression of severe pathologies. Development of innovative screening programmes is essential to promote population health by application of health risks assessment, individualised patient profiling and multi-parametric analysis, further used for cost-effective targeted prevention and treatments tailored to the person. The following healthcare areas are considered to be potentially strongly benefiting from the above proposed measures: suboptimal health conditions, sports medicine, stress overload and associated complications, planned pregnancies, periodontal health and dentistry, sleep medicine, eye health and disorders, inflammatory disorders, healing and pain management, metabolic disorders, cardiovascular disease, cancers, psychiatric and neurologic disorders, stroke of known and unknown aetiology, improved individual and population outcomes under pandemic conditions such as COVID-19. In a long-term way, a significantly improved healthcare economy is one of benefits of the proposed paradigm shift from reactive to Predictive, Preventive and Personalised Medicine (PPPM/3PM). A tight collaboration between all stakeholders including scientific community, healthcare givers, patient organisations, policy-makers and educators is essential for the smooth implementation of 3PM concepts in daily practice.

4.
Sci Rep ; 11(1): 11049, 2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-34040048

RESUMO

The SARS-CoV-2 pandemic has challenged researchers at a global scale. The scientific community's massive response has resulted in a flood of experiments, analyses, hypotheses, and publications, especially in the field of drug repurposing. However, many of the proposed therapeutic compounds obtained from SARS-CoV-2 specific assays are not in agreement and thus demonstrate the need for a singular source of COVID-19 related information from which a rational selection of drug repurposing candidates can be made. In this paper, we present the COVID-19 PHARMACOME, a comprehensive drug-target-mechanism graph generated from a compilation of 10 separate disease maps and sources of experimental data focused on SARS-CoV-2/COVID-19 pathophysiology. By applying our systematic approach, we were able to predict the synergistic effect of specific drug pairs, such as Remdesivir and Thioguanosine or Nelfinavir and Raloxifene, on SARS-CoV-2 infection. Experimental validation of our results demonstrate that our graph can be used to not only explore the involved mechanistic pathways, but also to identify novel combinations of drug repurposing candidates.


Assuntos
Antivirais/uso terapêutico , Tratamento Farmacológico da COVID-19 , Reposicionamento de Medicamentos/métodos , SARS-CoV-2/fisiologia , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/uso terapêutico , Alanina/análogos & derivados , Alanina/uso terapêutico , Terapia Combinada , Biologia Computacional , Sinergismo Farmacológico , Quimioterapia Combinada , GTP Fosfo-Hidrolases/uso terapêutico , Humanos , Bases de Conhecimento , Nelfinavir/uso terapêutico , Pandemias , Cloridrato de Raloxifeno/uso terapêutico
5.
PLoS Comput Biol ; 16(12): e1008464, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33264280

RESUMO

Elucidating the causal mechanisms responsible for disease can reveal potential therapeutic targets for pharmacological intervention and, accordingly, guide drug repositioning and discovery. In essence, the topology of a network can reveal the impact a drug candidate may have on a given biological state, leading the way for enhanced disease characterization and the design of advanced therapies. Network-based approaches, in particular, are highly suited for these purposes as they hold the capacity to identify the molecular mechanisms underlying disease. Here, we present drug2ways, a novel methodology that leverages multimodal causal networks for predicting drug candidates. Drug2ways implements an efficient algorithm which reasons over causal paths in large-scale biological networks to propose drug candidates for a given disease. We validate our approach using clinical trial information and demonstrate how drug2ways can be used for multiple applications to identify: i) single-target drug candidates, ii) candidates with polypharmacological properties that can optimize multiple targets, and iii) candidates for combination therapy. Finally, we make drug2ways available to the scientific community as a Python package that enables conducting these applications on multiple standard network formats.


Assuntos
Descoberta de Drogas/métodos , Reposicionamento de Medicamentos/métodos , Modelos Biológicos , Algoritmos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Simulação por Computador , Tratamento Farmacológico , Humanos , Neoplasias/tratamento farmacológico , Fenótipo , Polifarmacologia
6.
J Alzheimers Dis ; 78(1): 87-95, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32925069

RESUMO

BACKGROUND: Recent studies have suggested comorbid association between Alzheimer's disease (AD) and type 2 diabetes mellitus (T2DM) through identification of shared molecular mechanisms. However, the inference is pre-dominantly literature-based and lacks interpretation of pre-disposed genomic variants and transcriptomic measurables. OBJECTIVE: In this study, we aim to identify shared genetic variants and dysregulated genes in AD and T2DM and explore their functional roles in the comorbidity between the diseases. METHODS: The genetic variants for AD and T2DM were retrieved from GWAS catalog, GWAS central, dbSNP, and DisGeNet and subjected to linkage disequilibrium analysis. Next, shared variants were prioritized using RegulomeDB and Polyphen-2. Afterwards, a knowledge assembly embedding prioritized variants and their corresponding genes was created by mining relevant literature using Biological Expression Language. Finally, coherently perturbed genes from gene expression meta-analysis were mapped to the knowledge assembly to pinpoint biological entities and processes and depict a mechanistic link between AD and T2DM. RESULTS: Our analysis identified four genes (i.e., ABCG1, COMT, MMP9, and SOD2) that could have dual roles in both AD and T2DM. Using cartoon representation, we have illustrated a set of causal events surrounding these genes which are associated to biological processes such as oxidative stress, insulin resistance, apoptosis and cognition. CONCLUSION: Our approach of using data as the driving force for unraveling disease etiologies eliminates literature bias and enables identification of novel entities that serve as the bridge between comorbid conditions.


Assuntos
Doença de Alzheimer/genética , Diabetes Mellitus Tipo 2/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Modelos Biológicos
7.
Front Genet ; 10: 1203, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31824580

RESUMO

Pathway-centric approaches are widely used to interpret and contextualize -omics data. However, databases contain different representations of the same biological pathway, which may lead to different results of statistical enrichment analysis and predictive models in the context of precision medicine. We have performed an in-depth benchmarking of the impact of pathway database choice on statistical enrichment analysis and predictive modeling. We analyzed five cancer datasets using three major pathway databases and developed an approach to merge several databases into a single integrative one: MPath. Our results show that equivalent pathways from different databases yield disparate results in statistical enrichment analysis. Moreover, we observed a significant dataset-dependent impact on the performance of machine learning models on different prediction tasks. In some cases, MPath significantly improved prediction performance and also reduced the variance of prediction performances. Furthermore, MPath yielded more consistent and biologically plausible results in statistical enrichment analyses. In summary, this benchmarking study demonstrates that pathway database choice can influence the results of statistical enrichment analysis and predictive modeling. Therefore, we recommend the use of multiple pathway databases or integrative ones.

8.
ACS Omega ; 3(10): 12330-12340, 2018 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-30411002

RESUMO

The study of protein conformations using molecular dynamics (MD) simulations has been in place for decades. A major contribution to the structural stability and native conformation of a protein is made by the primary sequence and disulfide bonds formed during the folding process. Here, we investigated µ-conotoxins GIIIA, KIIIA, PIIIA, SIIIA, and SmIIIA as model peptides possessing three disulfide bonds. Their NMR structures were used for MD simulations in a novel approach studying the conformations between the folded and the unfolded states by systematically breaking the distinct disulfide bonds and monitoring the conformational stability of the peptides. As an outcome, the use of a combination of the existing knowledge and results from the simulations to classify the studied peptides within the extreme models of disulfide folding pathways, namely the bovine pancreatic trypsin inhibitor pathway and the hirudin pathway, is demonstrated. Recommendations for the design and synthesis of cysteine-rich peptides with a reduced number of disulfide bonds conclude the study.

9.
Amino Acids ; 50(3-4): 383-395, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29249020

RESUMO

Breast cancer epidemic in the early twenty-first century results in around two million new cases and half-a-million of the disease-related deaths registered annually worldwide. A particularly dramatic situation is attributed to some specific patient subgroups such as the triple-negative breast cancer (TNBC). TNBC is a particularly aggressive type of breast cancer lacking clear diagnostic approach and targeted therapies. Consequently, more than 50% of the TNBC patients die of the metastatic BC within the first 6 months of the diagnosis. In the current study we have hypothesised that multi-omic approach utilising blood samples may lead to discovery of a unique molecular signature of the TNBC subtype. The results achieved demonstrate, indeed, multi-omics as highly promising approach that could be of great clinical utility for development of predictive diagnosis, targeted prevention and treatments tailored to the person-overall advancing the management of the TNBC.


Assuntos
Biomarcadores Tumorais/genética , Proteínas de Neoplasias/genética , Neoplasias/genética , Neoplasias de Mama Triplo Negativas/genética , Adulto , Biomarcadores Tumorais/sangue , Eletroforese em Gel Bidimensional , Feminino , Humanos , Pessoa de Meia-Idade , Metástase Neoplásica , Neoplasias/sangue , Neoplasias/patologia , Medicina de Precisão , Proteômica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Neoplasias de Mama Triplo Negativas/sangue , Neoplasias de Mama Triplo Negativas/classificação , Neoplasias de Mama Triplo Negativas/patologia
10.
Nucleic Acids Res ; 45(16): 9290-9301, 2017 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-28934507

RESUMO

With this study, we provide a comprehensive reference dataset of detailed miRNA expression profiles from seven types of human peripheral blood cells (NK cells, B lymphocytes, cytotoxic T lymphocytes, T helper cells, monocytes, neutrophils and erythrocytes), serum, exosomes and whole blood. The peripheral blood cells from buffy coats were typed and sorted using FACS/MACS. The overall dataset was generated from 450 small RNA libraries using high-throughput sequencing. By employing a comprehensive bioinformatics and statistical analysis, we show that 3' trimming modifications as well as composition of 3' added non-templated nucleotides are distributed in a lineage-specific manner-the closer the hematopoietic progenitors are, the higher their similarities in sequence variation of the 3' end. Furthermore, we define the blood cell-specific miRNA and isomiR expression patterns and identify novel cell type specific miRNA candidates. The study provides the most comprehensive contribution to date towards a complete miRNA catalogue of human peripheral blood, which can be used as a reference for future studies. The dataset has been deposited in GEO and also can be explored interactively following this link: http://134.245.63.235/ikmb-tools/bloodmiRs.


Assuntos
Células Sanguíneas/metabolismo , MicroRNAs/sangue , Linhagem da Célula , Eritrócitos/metabolismo , Exossomos/metabolismo , Humanos , Linfócitos/metabolismo , MicroRNAs/química , Células Mieloides/metabolismo , Análise de Sequência de RNA , Transcriptoma
11.
Drug Discov Today ; 22(2): 327-339, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27989722

RESUMO

Decades of costly failures in translating drug candidates from preclinical disease models to human therapeutic use warrant reconsideration of the priority placed on animal models in biomedical research. Following an international workshop attended by experts from academia, government institutions, research funding bodies, and the corporate and non-governmental organisation (NGO) sectors, in this consensus report, we analyse, as case studies, five disease areas with major unmet needs for new treatments. In view of the scientifically driven transition towards a human pathways-based paradigm in toxicology, a similar paradigm shift appears to be justified in biomedical research. There is a pressing need for an approach that strategically implements advanced, human biology-based models and tools to understand disease pathways at multiple biological scales. We present recommendations to help achieve this.


Assuntos
Pesquisa Biomédica , Descoberta de Drogas , Doença de Alzheimer , Animais , Asma , Transtorno do Espectro Autista , Doenças Autoimunes , Consenso , Fibrose Cística , Humanos , Hepatopatias , Modelos Animais
12.
Int J Mol Sci ; 16(12): 29179-206, 2015 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-26690135

RESUMO

Since the decoding of the Human Genome, techniques from bioinformatics, statistics, and machine learning have been instrumental in uncovering patterns in increasing amounts and types of different data produced by technical profiling technologies applied to clinical samples, animal models, and cellular systems. Yet, progress on unravelling biological mechanisms, causally driving diseases, has been limited, in part due to the inherent complexity of biological systems. Whereas we have witnessed progress in the areas of cancer, cardiovascular and metabolic diseases, the area of neurodegenerative diseases has proved to be very challenging. This is in part because the aetiology of neurodegenerative diseases such as Alzheimer´s disease or Parkinson´s disease is unknown, rendering it very difficult to discern early causal events. Here we describe a panel of bioinformatics and modeling approaches that have recently been developed to identify candidate mechanisms of neurodegenerative diseases based on publicly available data and knowledge. We identify two complementary strategies-data mining techniques using genetic data as a starting point to be further enriched using other data-types, or alternatively to encode prior knowledge about disease mechanisms in a model based framework supporting reasoning and enrichment analysis. Our review illustrates the challenges entailed in integrating heterogeneous, multiscale and multimodal information in the area of neurology in general and neurodegeneration in particular. We conclude, that progress would be accelerated by increasing efforts on performing systematic collection of multiple data-types over time from each individual suffering from neurodegenerative disease. The work presented here has been driven by project AETIONOMY; a project funded in the course of the Innovative Medicines Initiative (IMI); which is a public-private partnership of the European Federation of Pharmaceutical Industry Associations (EFPIA) and the European Commission (EC).


Assuntos
Mineração de Dados , Doenças Neurodegenerativas/genética , Animais , Biologia Computacional , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Bases de Conhecimento , Polimorfismo de Nucleotídeo Único
13.
PLoS One ; 10(2): e0116718, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25665127

RESUMO

BACKGROUND: In order to retrieve useful information from scientific literature and electronic medical records (EMR) we developed an ontology specific for Multiple Sclerosis (MS). METHODS: The MS Ontology was created using scientific literature and expert review under the Protégé OWL environment. We developed a dictionary with semantic synonyms and translations to different languages for mining EMR. The MS Ontology was integrated with other ontologies and dictionaries (diseases/comorbidities, gene/protein, pathways, drug) into the text-mining tool SCAIView. We analyzed the EMRs from 624 patients with MS using the MS ontology dictionary in order to identify drug usage and comorbidities in MS. Testing competency questions and functional evaluation using F statistics further validated the usefulness of MS ontology. RESULTS: Validation of the lexicalized ontology by means of named entity recognition-based methods showed an adequate performance (F score = 0.73). The MS Ontology retrieved 80% of the genes associated with MS from scientific abstracts and identified additional pathways targeted by approved disease-modifying drugs (e.g. apoptosis pathways associated with mitoxantrone, rituximab and fingolimod). The analysis of the EMR from patients with MS identified current usage of disease modifying drugs and symptomatic therapy as well as comorbidities, which are in agreement with recent reports. CONCLUSION: The MS Ontology provides a semantic framework that is able to automatically extract information from both scientific literature and EMR from patients with MS, revealing new pathogenesis insights as well as new clinical information.


Assuntos
Ontologias Biológicas , Registros Eletrônicos de Saúde , Armazenamento e Recuperação da Informação , Esclerose Múltipla/classificação , PubMed , Antineoplásicos/uso terapêutico , Antirreumáticos/uso terapêutico , Biologia Computacional/métodos , Cloridrato de Fingolimode/uso terapêutico , Humanos , Imunossupressores/uso terapêutico , Descoberta do Conhecimento , Mitoxantrona/uso terapêutico , Esclerose Múltipla/tratamento farmacológico , Rituximab/uso terapêutico
14.
Sci Rep ; 5: 8013, 2015 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-25622824

RESUMO

miRNA plays an important role in tumourgenesis by regulating expression of oncogenes and tumour suppressors. Thus affects cell proliferation and differentiation, apoptosis, invasion and angiogenesis. miRNAs are potential biomarkers for diagnosis, prognosis and therapies of different forms of cancer. However, relationship between response of cancer patients towards targeted therapy and the resulting modifications of the miRNA transcriptome in the context of pathway regulation is poorly understood. With ever-increasing pathways and miRNA-mRNA interaction databases, freely available mRNA and miRNA expression data in multiple cancer therapy have produced an unprecedented opportunity to decipher the role of miRNAs in early prediction of therapeutic efficacy in diseases. Efficient translation of -omics data and accumulated knowledge to clinical decision-making are of paramount scientific and public health interest. Well-structured translational algorithms are needed to bridge the gap from databases to decisions. Herein, we present a novel SMARTmiR algorithm to prospectively predict the role of miRNA as therapeutic biomarker for an anti-EGFR monoclonal antibody i.e. cetuximab treatment in colorectal cancer.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Biomarcadores Tumorais/metabolismo , Neoplasias Colorretais/tratamento farmacológico , MicroRNAs/metabolismo , Algoritmos , Anticorpos Monoclonais/toxicidade , Apoptose/efeitos dos fármacos , Biomarcadores Tumorais/genética , Diferenciação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Cetuximab/uso terapêutico , Cetuximab/toxicidade , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Receptores ErbB , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos
15.
J Biomed Semantics ; 5: 31, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25093069

RESUMO

BACKGROUND: In the past years, significant progress has been made to develop and use experimental settings for extensive data collection on tobacco smoke exposure and tobacco smoke exposure-associated diseases. Due to the growing number of such data, there is a need for domain-specific standard ontologies to facilitate the integration of tobacco exposure data. RESULTS: The CSEO (version 1.0) is composed of 20091 concepts. The ontology in its current form is able to capture a wide range of cigarette smoke exposure concepts within the knowledge domain of exposure science with a reasonable sensitivity and specificity. Moreover, it showed a promising performance when used to answer domain expert questions. The CSEO complies with standard upper-level ontologies and is freely accessible to the scientific community through a dedicated wiki at https://publicwiki-01.fraunhofer.de/CSEO-Wiki/index.php/Main_Page. CONCLUSIONS: The CSEO has potential to become a widely used standard within the academic and industrial community. Mainly because of the emerging need of systems toxicology to controlled vocabularies and also the lack of suitable ontologies for this domain, the CSEO prepares the ground for integrative systems-based research in the exposure science.

16.
J Transl Med ; 11: 177, 2013 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-23885764

RESUMO

BACKGROUND: While the majority of studies have focused on the association between sex hormones and dementia, emerging evidence supports the role of other hormone signals in increasing dementia risk. However, due to the lack of an integrated view on mechanistic interactions of hormone signaling pathways associated with dementia, molecular mechanisms through which hormones contribute to the increased risk of dementia has remained unclear and capacity of translating hormone signals to potential therapeutic and diagnostic applications in relation to dementia has been undervalued. METHODS: Using an integrative knowledge- and data-driven approach, a global hormone interaction network in the context of dementia was constructed, which was further filtered down to a model of convergent hormone signaling pathways. This model was evaluated for its biological and clinical relevance through pathway recovery test, evidence-based analysis, and biomarker-guided analysis. Translational validation of the model was performed using the proposed novel mechanism discovery approach based on 'serendipitous off-target effects'. RESULTS: Our results reveal the existence of a well-connected hormone interaction network underlying dementia. Seven hormone signaling pathways converge at the core of the hormone interaction network, which are shown to be mechanistically linked to the risk of dementia. Amongst these pathways, estrogen signaling pathway takes the major part in the model and insulin signaling pathway is analyzed for its association to learning and memory functions. Validation of the model through serendipitous off-target effects suggests that hormone signaling pathways substantially contribute to the pathogenesis of dementia. CONCLUSIONS: The integrated network model of hormone interactions underlying dementia may serve as an initial translational platform for identifying potential therapeutic targets and candidate biomarkers for dementia-spectrum disorders such as Alzheimer's disease.


Assuntos
Demência/genética , Demência/metabolismo , Predisposição Genética para Doença , Hormônios/metabolismo , Pesquisa Translacional Biomédica/métodos , Algoritmos , Doença de Alzheimer/metabolismo , Biomarcadores/metabolismo , Análise por Conglomerados , Redes Reguladoras de Genes , Genômica , Humanos , Fenótipo , Transdução de Sinais
17.
Drug Discov Today ; 18(13-14): 614-24, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23280501

RESUMO

Recent success of companion diagnostics along with the increasing regulatory pressure for better identification of the target population has created an unprecedented incentive for drug discovery companies to invest in novel strategies for biomarker discovery. In parallel with the rapid advancement and clinical adoption of high-throughput technologies, a number of knowledge management and systems biology approaches have been developed to analyze an ever increasing collection of OMICs data. This review discusses current biomarker discovery technologies highlighting challenges and opportunities of knowledge capturing and presenting a perspective of the future integrative modeling approaches as an emerging trend in biomarker prediction.


Assuntos
Biomarcadores Tumorais/análise , Pesquisa Biomédica/métodos , Oncologia/métodos , Neoplasias/química , Animais , Biomarcadores Tumorais/genética , Mineração de Dados , Marcadores Genéticos , Genômica , Ensaios de Triagem em Larga Escala , Humanos , Bases de Conhecimento , Metabolômica , Neoplasias/genética , Neoplasias/patologia , Neoplasias/terapia , Valor Preditivo dos Testes , Prognóstico , Proteômica , Biologia de Sistemas
18.
Bioinformatics ; 27(12): 1684-90, 2011 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-21546398

RESUMO

MOTIVATION: Biomedical ontologies have proved to be valuable tools for data analysis and data interoperability. Protein-ligand interactions are key players in drug discovery and development; however, existing public ontologies that describe the knowledge space of biomolecular interactions do not cover all aspects relevant to pharmaceutical modelling and simulation. RESULTS: The protein--ligand interaction ontology (PLIO) was developed around three main concepts, namely target, ligand and interaction, and was enriched by adding synonyms, useful annotations and references. The quality of the ontology was assessed based on structural, functional and usability features. Validation of the lexicalized ontology by means of natural language processing (NLP)-based methods showed a satisfactory performance (F-score = 81%). Through integration into our information retrieval environment we can demonstrate that PLIO supports lexical search in PubMed abstracts. The usefulness of PLIO is demonstrated by two use-case scenarios and it is shown that PLIO is able to capture both confirmatory and new knowledge from simulation and empirical studies. AVAILABILITY: The PLIO ontology is made freely available to the public at http://www.scai.fraunhofer.de/bioinformatics/downloads.html.


Assuntos
Ligantes , Proteínas/química , Vocabulário Controlado , Mineração de Dados , Protease de HIV/química , Processamento de Linguagem Natural , Ligação Proteica , PubMed , Antagonistas de Receptores Purinérgicos P1/química
19.
Mol Inform ; 29(11): 781-91, 2010 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27464268

RESUMO

The use of protein-ligand interaction information has been reported to improve and optimize the docking results in virtual screening experiments. Here we propose an improved weighted-residue profile based method to profile the protein-ligand interactions based on the available dataset of known actives and utilize this weighted residue profile information, together with the scoring function, as selection criteria to increase hit rates in virtual screening experiments. The generated fingerprint data is not directly based on the protein-ligand complexes but taken from the available interaction data derived from the docking results. The ability of the method to recover the active compounds was tested on two data sets of a compound library designed for antagonists of the A2A receptor. The results show better hits enrichments by using the weighted-residue based profiles of protein-ligand interactions as compared to the normal binding energy based scoring schemes of the two docking programs.

20.
Stud Health Technol Inform ; 147: 3-12, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19593039

RESUMO

In this paper we present DockFlow, a prototypic version of a PharmaGrid. DockFlow is supporting pharmaceutical research through enabling virtual screening on the Grid. The system was developed in the course of the BRIDGE project funded by the European Commission. Grids have been used before to run compute- and data-intensive virtual screening experiments, like in the WISDOM project. With DockFlow, however, we addressed a variety of problems yet unsolved, like the diversity of results produced by different docking tools. We also addressed the problem of analysing the data produced in a distributed virtual screening system applying a combinatorial docking approach. In DockFlow we worked on a grid-based problem solving environment for virtual screening with the following major features: execution of four different docking services (FlexX, AutoDock, DOCK and GAsDock) at locations in Europe and China remotely from a common workflow, storage of the results in a common Docking Database providing a shared analysis platform for the collaboration partners and combination of the results. The DockFlow prototype is evaluated on two scientific case studies: malaria and avian flu.


Assuntos
Bases de Dados Factuais , Programas de Rastreamento/métodos , Preparações Farmacêuticas , Pesquisa , Integração de Sistemas , Humanos , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA