Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Bacteriol ; 179(15): 4937-41, 1997 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-9244285

RESUMO

The structural genes sdhA and sdhB, coding for the alpha- and beta-subunits of the [4Fe-4S] cluster containing L-serine dehydratase from Peptostreptococcus asaccharolyticus, have been cloned and sequenced. Expression of modified sdhB together with sdhA in Escherichia coli led to overproduction of active His6-tagged L-serine dehydratase. E. coli MEW22, deficient in the L-serine dehydratase L-SD1, was complemented by this sdhBA construct. The derived amino acid sequence of SdhBA shares similarities with both monomeric L-serine dehydratases, L-SD1 and L-SD2, from E. coli and with a putative L-serine dehydratase from Haemophilus influenzae, which suggests that these three enzymes are also iron-sulfur proteins.


Assuntos
Proteínas de Bactérias/genética , Escherichia coli/enzimologia , Flavoproteínas/genética , Proteínas Ferro-Enxofre/genética , L-Serina Desidratase/genética , Peptostreptococcus/enzimologia , Succinato Desidrogenase , Sequência de Aminoácidos , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/química , Sequência de Bases , Clonagem Molecular , DNA Bacteriano , Flavoproteínas/biossíntese , Flavoproteínas/química , Expressão Gênica , Teste de Complementação Genética , Proteínas Ferro-Enxofre/biossíntese , Proteínas Ferro-Enxofre/química , L-Serina Desidratase/biossíntese , L-Serina Desidratase/química , Dados de Sequência Molecular , Peptostreptococcus/genética , Subunidades Proteicas , Homologia de Sequência de Aminoácidos
2.
FEBS Lett ; 351(3): 416-8, 1994 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-8082806

RESUMO

Investigations were performed with regard to the function of the iron-sulfur cluster of L-serine dehydratase from Peptostreptococcus asaccharolyticus, an enzyme which is novel in the class of deaminating hydro-lyases in that it lacks pyridoxal-5'-phosphate. Anaerobically purified L-serine dehydratase from P. asaccharolyticus revealed EPR spectra characteristic of a [3Fe-4S]+ cluster constituting 1% of the total enzyme concentration. Upon incubation of the enzyme under air the intensity of the [3Fe-4S]+ signal increased correlating with the loss of enzymatic activity. Addition of L-serine prevented this. Hence, active L-serine dehydratase probably contains a diamagnetic [4Fe-4S]2+ cluster which is converted by oxidation and loss of one iron ion to a paramagnetic [3Fe-4S]+ cluster, resulting in inactivation of the enzyme. In analogy to the mechanism elucidated for aconitase, it is proposed that L-serine is coordinated via its hydroxyl and carboxyl groups to the labile iron atom of the [4Fe-4S]2+ cluster.


Assuntos
Proteínas Ferro-Enxofre/metabolismo , L-Serina Desidratase/metabolismo , Peptostreptococcus/enzimologia , Catálise , Espectroscopia de Ressonância de Spin Eletrônica , Oxirredução , Especificidade por Substrato
3.
Trends Biochem Sci ; 18(8): 297-300, 1993 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-8236444

RESUMO

Two families of enzymes are described which catalyse identical chemical reactions but differ in their prosthetic groups and hence in their mechanism of action. One family, the pyridoxal-5'-phosphate (PLP)-dependent L-threonine dehydratases, also use L-serine as substrate. The other, hitherto unrecognized family is the iron-dependent, highly specific bacterial L-serine dehydratases. It has been shown that L-serine dehydratase from the anaerobic bacterium Peptostreptococcus asaccharolyticus contains an iron-sulfur cluster but no PLP. A mechanism for the dehydration of L-serine which is similar, but not identical, to that of the dehydration of citrate catalysed by aconitase is proposed.


Assuntos
Proteínas Ferro-Enxofre/química , L-Serina Desidratase/química , Peptostreptococcus/enzimologia , Proteínas Ferro-Enxofre/fisiologia , L-Serina Desidratase/fisiologia , Fosfato de Piridoxal , Especificidade por Substrato , Treonina Desidratase/química
4.
Eur J Biochem ; 215(2): 341-9, 1993 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-8344301

RESUMO

L-Serine dehydratase from the Gram-positive bacterium Peptostreptococcus asaccharolyticus is novel in the group of enzymes deaminating 2-hydroxyamino acids in that it is an iron-sulfur protein and lacks pyridoxal phosphate [Grabowski, R. and Buckel, W. (1991) Eur. J. Biochem. 199, 89-94]. It was proposed that this type of L-serine dehydratase is widespread among bacteria but has escaped intensive characterization due to its oxygen lability. Here, we present evidence that another Gram-positive bacterium, Clostridium propionicum, contains both an iron-sulfur-dependent L-serine dehydratase and a pyridoxal-phosphate-dependent L-threonine dehydratase. These findings support the notion that two independent mechanisms exist for the deamination of 2-hydroxyamino acids. L-Threonine dehydratase was purified 400-fold to apparent homogeneity and revealed as being a tetramer of identical subunits (m = 39 kDa). The purified enzyme exhibited a specific activity of 5 mu kat/mg protein and a Km for L-threonine of 7.7 mM. L-Serine (Km = 380 mM) was also deaminated, the V/Km ratio, however, being 118-fold lower than the one for L-threonine. L-Threonine dehydratase was inactivated by borohydride, hydroxylamine and phenylhydrazine, all known inactivators of pyridoxal-phosphate-containing enzymes. Incubation with NaB3H4 specifically labelled the enzyme. Activity of the phenylhydrazine-inactivated enzyme could be restored by pyridoxal phosphate. L-Serine dehydratase was also purified 400-fold, but its extreme instability did not permit purification to homogeneity. The enzyme was specific for L-serine (Km = 5 mM) and was inhibited by L-cysteine (Ki = 0.5 mM) and D-serine (Ki = 8 mM). Activity was insensitive towards borohydride, hydroxylamine and phenylhydrazine but was rapidly lost upon exposure to air. Fe2+ specifically reactivated the enzyme. L-Serine dehydratase was composed of two different subunits (alpha, m = 30 kDa; beta, m = 26 kDa), their apparent molecular masses being similar to the ones of the two subunits of the iron-sulfur-dependent enzyme from P. asaccharolyticus. Moreover, the N-terminal sequences of the small subunits from these two organisms were found to be 47% identical. In addition, 38% identity with the N-terminus of one of the two L-serine dehydratases of Escherichia coli was detected.


Assuntos
Clostridium/enzimologia , L-Serina Desidratase/metabolismo , Treonina Desidratase/metabolismo , Sequência de Aminoácidos , Clostridium/crescimento & desenvolvimento , Meios de Cultura , Eletroforese em Gel de Poliacrilamida , Ativação Enzimática , Indução Enzimática , Ferro/análise , L-Serina Desidratase/química , L-Serina Desidratase/isolamento & purificação , Dados de Sequência Molecular , Fosfato de Piridoxal/análise , Alinhamento de Sequência , Treonina Desidratase/química , Treonina Desidratase/isolamento & purificação
5.
Eur J Biochem ; 205(2): 743-9, 1992 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-1572371

RESUMO

The stereochemistry of the deamination of L-threonine to 2-oxobutyrate, catalyzed by purified L-serine dehydratase of Peptostreptococcus asaccharolyticus, was elucidated. For this purpose the enzyme reaction was carried out with unlabelled L-threonine in 2H2O and in 3HOH, as well as with L-[3-3H]threonine in unlabelled water. Isotopically labelled 2-oxobutyrate thus formed was directly reduced in a coupled reaction with L- or D-lactate dehydrogenase and NADH. The (2R)- or (2S)-2-hydroxybutyrate species obtained were then subjected to configurational analyses of their labelled methylene group. The results from 1H-NMR spectroscopy and, after degradation of 2-hydroxybutyrate to propionate, the transcarboxylase assay consistently indicated that the deamination of L-threonine catalyzed by L-serine dehydratase of P. asaccharolyticus proceeds with inversion and retention in a 2:1 ratio. This partial racemization is the first ever to be observed for a reaction catalyzed by serine dehydratase, therefore confirming the distinction of the L-serine dehydratase of P. asaccharolyticus as an iron-sulfur protein from those dehydratases dependent on pyridoxal phosphate. For the latter enzymes exclusively, retention has been reported.


Assuntos
Proteínas Ferro-Enxofre/metabolismo , L-Serina Desidratase/metabolismo , Peptostreptococcus/enzimologia , Treonina/metabolismo , Radioisótopos de Carbono , Proteínas Ferro-Enxofre/isolamento & purificação , Cinética , L-Serina Desidratase/isolamento & purificação , Espectroscopia de Ressonância Magnética/métodos , Técnica de Diluição de Radioisótopos , Estereoisomerismo , Trítio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA