Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancer Immunol Immunother ; 72(12): 4195-4207, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37848682

RESUMO

T cells expressing a mesothelin (MSLN)-specific T cell receptor fusion construct (TRuC®), called TC-210, have demonstrated robust antitumor activity in preclinical models of mesothelioma, ovarian cancer, and lung cancer. However, they are susceptible to suppression by the programmed cell death protein 1 (PD-1)/programmed cell death protein ligand 1 (PD-L1) axis and lack intrinsic costimulatory signaling elements. To enhance the function of anti-MSLN TRuC-T cells, chimeric switch receptors (CSRs) have been designed to co-opt the immunosuppressive PD-1/PD-L1 axis and to deliver a CD28-mediated costimulatory signal. Here, we report that coexpression of the PD1-CD28 CSR in TRuC-T cells enhanced T cell receptor signaling, increased proinflammatory effector cytokines, decreased anti-inflammatory cytokines, and sustained effector function in the presence of PD-L1 when compared with TC-210. Anti-MSLN TRuC-T cells engineered to coexpress PD1-CD28 CSRs comprising the ectodomain of PD-1 and the intracellular domain of CD28 linked by the transmembrane domain of PD-1 were selected for integration into an anti-MSLN TRuC-T cell therapy product called TC-510. In vitro, TC-510 showed significant improvements in persistence and resistance to exhaustion upon chronic stimulation by tumor cells expressing MSLN and PD-L1 when compared with TC-210. In vivo, TC-510 showed a superior ability to provide durable protection following tumor rechallenge, versus TC-210. These data demonstrate that integration of a PD1-CD28 CSR into TRuC-T cells improves effector function, resistance to exhaustion, and prolongs persistence. Based on these findings, TC-510 is currently being evaluated in patients with MSLN-expressing solid tumors.


Assuntos
Antígenos CD28 , Mesotelioma , Humanos , Mesotelina , Receptor de Morte Celular Programada 1/metabolismo , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Citocinas/metabolismo
2.
Oncoimmunology ; 12(1): 2182058, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36875551

RESUMO

T cell Receptor (TCR) Fusion Construct (TRuC®) T cells harness all signaling subunits of the TCR to activate T cells and eliminate tumor cells, with minimal release of cytokines. While adoptive cell therapy with chimeric antigen receptor (CAR)-T cells has shown unprecedented clinical efficacy against B-cell malignancies, monotherapy with CAR-T cells has suboptimal clinical efficacy against solid tumors, probably because of the artificial signaling properties of the CAR. TRuC-T cells may address the suboptimal efficacy of existing CAR-T therapies for solid tumors. Here, we report that mesothelin (MSLN)-specific TRuC-T cells (referred to as TC-210 T cells) potently kill MSLN+ tumor cells in vitro and efficiently eradicate MSLN+ mesothelioma, lung, and ovarian cancers in xenograft mouse tumor models. When benchmarked against MSLN-targeted BBζ CAR-T cells (MSLN-BBζ CAR-T cells), TC-210 T cells show an overall comparable level of efficacy; however, TC-210 T cells consistently show faster tumor rejection kinetics that are associated with earlier intratumoral accumulation and earlier signs of activation. Furthermore, in vitro and ex vivo metabolic profiling suggests TC-210 T cells have lower glycolytic activity and higher mitochondrial metabolism than MSLN-BBζ CAR-T cells. These data highlight TC-210 T cells as a promising cell therapy for treating MSLN-expressing cancers. The differentiated profile from CAR-T cells may translate into better efficacy and safety of TRuC-T cells for solid tumors.


Assuntos
Mesotelioma Maligno , Neoplasias Ovarianas , Humanos , Animais , Camundongos , Feminino , Linfócitos T , Mesotelina , Receptores de Antígenos de Linfócitos T , Modelos Animais de Doenças
3.
Immunotherapy ; 12(1): 89-103, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31902264

RESUMO

Recently, two chimeric antigen receptor (CAR) T cell therapies were approved based on their remarkable efficacy in patients with hematological malignancies. By contrast, CAR-T cell therapies results in solid tumors have been less promising. To develop the next generation of T cell therapies a better understanding of T cell receptor (TCR) biology and its implication for the design of synthetic receptors is critical. Here, we review current and newly developed forms of T cell therapies and how their utilization of different components of the TCR signaling machinery and their requirement for engagement (or not) of human leukocyte antigen impacts their design, efficacy and applicability as cancer drugs. Notably, we highlight the development of human leukocyte antigen-independent T cell platforms that utilize the full TCR complex as having promise to overcome some of the limitations of existing T cell therapies.


Assuntos
Vacinas Anticâncer/imunologia , Imunoterapia Adotiva/métodos , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T/metabolismo , Animais , Humanos , Terapia de Alvo Molecular , Neoplasias/imunologia , Engenharia de Proteínas , Receptores de Antígenos de Linfócitos T/genética , Transdução de Sinais , Linfócitos T/imunologia
4.
Nat Commun ; 10(1): 2087, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-31064990

RESUMO

T cells expressing CD19-targeting chimeric antigen receptors (CARs) reveal high efficacy in the treatment of B cell malignancies. Here, we report that T cell receptor fusion constructs (TRuCs) comprising an antibody-based binding domain fused to T cell receptor (TCR) subunits can effectively reprogram an intact TCR complex to recognize tumor surface antigens. Unlike CARs, TRuCs become a functional component of the TCR complex. TRuC-T cells kill tumor cells as potently as second-generation CAR-T cells, but at significant lower cytokine release and despite the absence of an extra co-stimulatory domain. TRuC-T cells demonstrate potent anti-tumor activity in both liquid and solid tumor xenograft models. In several models, TRuC-T cells are more efficacious than respective CAR-T cells. TRuC-T cells are shown to engage the signaling capacity of the entire TCR complex in an HLA-independent manner.


Assuntos
Imunoterapia Adotiva/métodos , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T/imunologia , Receptores Artificiais/imunologia , Anticorpos de Cadeia Única/imunologia , Linfócitos T/imunologia , Animais , Antígenos CD19/imunologia , Antígenos de Neoplasias/imunologia , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos Endogâmicos NOD , Neoplasias/imunologia , Cultura Primária de Células , Domínios Proteicos , Receptores de Antígenos de Linfócitos T/genética , Receptores Artificiais/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Anticorpos de Cadeia Única/genética , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Adv Drug Deliv Rev ; 141: 47-54, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30981835

RESUMO

Chimeric antigen receptor (CAR) T cells have been remarkably successful in patients with hematological malignancies expressing the CD19 surface antigen, but such level of success is far from being replicated in solid tumors. Engineered T cell receptor (TCR) T cells targeting cancer antigens were first developed over two decades ago and represent an alternative adoptive T cell approach that has produced provocative clinical data in solid cancers. However, several factors may hinder this technology from realizing its full potential, including the need for HLA matching, HLA downregulation by cancer cells, the suppressive tumor microenvironment, and tissue liabilities resulting from targeting antigens shared with normal tissues. Efforts therefore continue to engineer enhanced versions of CAR T and TCR T therapies that can overcome current barriers. Furthermore, emergent novel TCR-based, HLA-unrestricted platforms may also provide unique tools that integrate the complexity of the TCR signaling cascade that can be applied to treat solid tumors. This article reviews the current state of development of TCR T cell approaches and discusses next generation improvements to overcome their current limitations.


Assuntos
Imunoterapia Adotiva , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T/imunologia , Animais , Antígenos/imunologia , Humanos , Neoplasias/imunologia
6.
PLoS Negl Trop Dis ; 12(4): e0006404, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29668679

RESUMO

A number of features at the host-parasite interface are reminiscent of those that are also observed at the host-tumor interface. Both cancer cells and parasites establish a tissue microenvironment that allows for immune evasion and may reflect functional alterations of various innate cells. Here, we investigated how the phenotype and function of human monocytes is altered by exposure to cancer cell lines and if these functional and phenotypic alterations parallel those induced by exposure to helminth parasites. Thus, human monocytes were exposed to three different cancer cell lines (breast, ovarian, or glioblastoma) or to live microfilariae (mf) of Brugia malayi-a causative agent of lymphatic filariasis. After 2 days of co-culture, monocytes exposed to cancer cell lines showed markedly upregulated expression of M1-associated (TNF-α, IL-1ß), M2-associated (CCL13, CD206), Mreg-associated (IL-10, TGF-ß), and angiogenesis associated (MMP9, VEGF) genes. Similar to cancer cell lines, but less dramatically, mf altered the mRNA expression of IL-1ß, CCL13, TGM2 and MMP9. When surface expression of the inhibitory ligands PDL1 and PDL2 was assessed, monocytes exposed to both cancer cell lines and to live mf significantly upregulated PDL1 and PDL2 expression. In contrast to exposure to mf, exposure to cancer cell lines increased the phagocytic ability of monocytes and reduced their ability to induce T cell proliferation and to expand Granzyme A+ CD8+ T cells. Our data suggest that despite the fact that helminth parasites and cancer cell lines are extraordinarily disparate, they share the ability to alter the phenotype of human monocytes.


Assuntos
Brugia Malayi/imunologia , Filariose/imunologia , Evasão da Resposta Imune , Monócitos/imunologia , Monócitos/parasitologia , Neoplasias/imunologia , Animais , Brugia Malayi/genética , Brugia Malayi/fisiologia , Linhagem Celular Tumoral , Filariose/parasitologia , Humanos , Interleucina-10/genética , Interleucina-10/imunologia , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Ativação Linfocitária , Fagocitose , Linfócitos T/imunologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia
8.
J Immunol ; 194(3): 878-82, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25548231

RESUMO

CD4(+) regulatory T cells (Tregs) are critical for maintaining self-tolerance and function to prevent autoimmune disease. High densities of intratumoral Tregs are generally associated with poor patient prognosis, a correlation attributed to their broad immune-suppressive features. Two major populations of Tregs have been defined, thymically derived natural Tregs (nTregs) and peripherally induced Tregs (iTregs). However, the relative contribution of nTregs versus iTregs to the intratumoral Treg compartment remains controversial. Demarcating the proportion of nTregs versus iTregs has important implications in the design of therapeutic strategies to overcome their antagonistic effects on antitumor immune responses. We used epigenetic, phenotypic, and functional parameters to evaluate the composition of nTregs versus iTregs isolated from mouse tumor models and primary human tumors. Our findings failed to find evidence for extensive intratumoral iTreg induction. Rather, we identified a population of Foxp3-stable nTregs in tumors from mice and humans.


Assuntos
Epigênese Genética , Fatores de Transcrição Forkhead/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias/genética , Neoplasias/imunologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Animais , Antígenos de Superfície/metabolismo , Linhagem Celular Tumoral , Ilhas de CpG , Metilação de DNA , Modelos Animais de Doenças , Fatores de Transcrição Forkhead/metabolismo , Humanos , Imunofenotipagem , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Camundongos , Camundongos Transgênicos , Neoplasias/metabolismo , Fator de Crescimento Transformador beta/metabolismo
9.
Leuk Res ; 33(3): 465-73, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18835037

RESUMO

We have compared the cytotoxic activity of rituximab with that of blinatumomab (MT103/MEDI-538), a single-chain CD19-/CD3-bispecific antibody engaging human T cells. Blinatumomab consistently led to a higher degree of lysis of human lymphoma lines than rituximab, and was active at much lower concentration. The cytotoxicity mediated by blinatumomab and rituximab both caused a potent activation of pro-caspases 3 and 7 in target cells, a key event in induction of granzyme-mediated apoptotic cell death. Combination of rituximab with blinatumomab was found to greatly enhance the activity of rituximab, in particular at low effector-to-target cell ratios and at low antibody concentration.


Assuntos
Anticorpos Biespecíficos/farmacologia , Anticorpos Monoclonais/farmacologia , Citotoxicidade Imunológica/efeitos dos fármacos , Anticorpos Monoclonais Murinos , Antígenos CD19/imunologia , Protocolos de Quimioterapia Combinada Antineoplásica , Complexo CD3/imunologia , Caspase 3/metabolismo , Caspase 7/metabolismo , Sinergismo Farmacológico , Granzimas , Humanos , Linfoma de Células B/tratamento farmacológico , Linfoma de Células B/patologia , Rituximab , Células Tumorais Cultivadas
10.
Cancer Immunol Immunother ; 56(10): 1551-63, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17310380

RESUMO

BiTE molecules comprise a new class of bispecific single-chain antibodies redirecting previously unstimulated CD8+ and CD4+ T cells for the elimination of target cells. One example is MT103 (MEDI-538; bscCD19xCD3), a CD19-specific BiTE that can induce lysis of normal and malignant B cells at low picomolar concentrations, which is accompanied by T cell activation. Here, we explored in cell culture the impact of the glucocorticoid derivative dexamethasone on various activation parameters of human T cells in response to MT103. In case cytokine-related side effects should occur with BiTE molecules and other T cell-based approaches during cancer therapy it is important to understand whether glucocorticoids do interfere with the cytotoxic potential of T cells. We found that MT103 induced in the presence of target cells secretion by peripheral T cells of interleukin (IL)-2, tumor necrosis factor-alpha (TNF-alpha), interferon-gamma (IFN-gamma), IL-6, IL-10 and IL-4 into the cell culture medium. Production of all studied cytokines was effectively reduced by dexamethasone at a concentration between 1 and 3x10(-7) M. In contrast, upregulation of activation markers CD69, CD25, CD2 and LFA-1 on both CD4+ and CD8+ T cells, and T cell proliferation were barely affected by the steroid hormone analogue. Most importantly, dexamethasone did not detectably inhibit the cytotoxic activity of MT103-activated T cells against a human B lymphoma line as investigated with lymphocytes from 12 human donors. Glucocorticoids thus qualify as a potential co-medication for therapeutic BiTE molecules and other cytotoxic T cell therapies for treatment of cancer.


Assuntos
Anticorpos Biespecíficos/farmacologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/efeitos dos fármacos , Dexametasona/farmacologia , Glucocorticoides/farmacologia , Neoplasias/imunologia , Antígenos CD/metabolismo , Antígenos CD19/imunologia , Complexo CD3/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Citocinas/metabolismo , Citotoxicidade Imunológica/efeitos dos fármacos , Humanos , Ativação Linfocitária/efeitos dos fármacos , Antígeno-1 Associado à Função Linfocitária/metabolismo , Neoplasias/terapia
11.
Mol Immunol ; 44(8): 1935-43, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17083975

RESUMO

Many kinds of bispecific antibodies recruiting T cells for cancer therapy have been developed. Side-by-side comparison has shown that CD19-/CD3-bispecific antibodies of the diabody, tandem diabody (Tandab) and quadroma format had similar cytotoxic activity, with Tandab being the most active format. Tandab has also been claimed to be superior to single-chain (sc) Fv-based bispecific constructs although data from a side-by-side comparison are not available. In this study, we compared side-by-side MT103 (bscCD19xCD3), a single-chain bispecific antibody of the BiTE class, with a CD19-/CD3-bispecific representative of the Tandab class. Based on literature data, we have constructed, produced and characterized the LL linker version of Tandab, which was reported to be the most active version of Tandab proteins. A dimeric protein of 114kDa was obtained that showed proper bispecific binding to CD3- and CD19-positive cells and could redirect both pre-stimulated and unstimulated human T cells for lysis of human B lymphoma lines Raji, MEC-1 and Nalm-6. Raji cells were lysed at a half-maximal concentration (EC50) of 10 nM Tandab using pre-stimulated T cells, which closely matched the published activity of LL-Tandab with this particular cell line. MT103 had between 700- and 8000-fold higher efficacy than Tandab for redirected lysis of the three human B lymphoma lines. These data demonstrate that under identical experimental conditions, the BiTE format has far superior activity compared to the Tandab format and is also superior to conventional diabody and quadroma formats. The extraordinary potency of the BiTE class and its representative MT103 may translate into improved anti-tumor activity, lower dosing and lower costs of production compared to other bispecific antibody formats.


Assuntos
Anticorpos Biespecíficos/imunologia , Citotoxicidade Celular Dependente de Anticorpos , Antígenos CD19/imunologia , Antineoplásicos/imunologia , Complexo CD3/imunologia , Linfoma/imunologia , Animais , Anticorpos Biespecíficos/genética , Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Humanos , Linfoma/tratamento farmacológico , Camundongos , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/uso terapêutico
12.
Cancer Immunol Immunother ; 56(4): 459-68, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16937114

RESUMO

An important mode of action shared by human IgG1 antibody therapies is antibody-dependent cellular cytotoxicity (ADCC). ADCC relies on the interaction of the antibody's Fc portion with Fc-gama receptors (FcgammaR) on immune effector cells. The anti-tumor activity of human IgG1 antibodies is frequently assessed in mouse models. Binding of human IgG1 to murine FcgammaRs is however of reduced affinity. We here show that ADCC of adecatumumab (MT201), a fully human IgG1 antibody specific for epithelial cell adhesion molecule (EpCAM/CD326), is drastically lower if human peripheral blood mononuclear cells are replaced by murine splenocytes as effector cells. When the variable domains of adecatumumab were genetically fused to a murine IgG2a backbone (yielding mu-adecatumumab), ADCC with murine effector cells was much improved, but at the same time significantly reduced with human effector cells. The serum half-lives of adecatumumab and mu-adecatumumab were determined in mice and dosing schedules established that gave similar serum trough levels during a 4-week antibody treatment. The anti-tumor activities of adecatumumab and mu-adecatumumab were then compared side-by-side in a lung metastasis mouse model established with a syngeneic B16 melanoma line expressing human EpCAM at physiologically relevant levels. Treatment of mice with mu-adecatumumab led to an almost complete prevention of lung metastases, while the human version of the antibody was much less active. This shows that adecatumumab has high anti-tumor activity when tested in a form that is better compatible with the species' immune system. Moreover, our data suggest to routinely compare in mouse models human IgG1 and murine IgG2a versions of antibodies to properly assess the contribution of ADCC to overall anti-tumor activity.


Assuntos
Anticorpos Monoclonais/farmacologia , Antígenos CD/imunologia , Antineoplásicos/farmacologia , Moléculas de Adesão Celular/farmacologia , Modelos Animais de Doenças , Neoplasias Pulmonares/tratamento farmacológico , Receptores de IgG/imunologia , Animais , Anticorpos Monoclonais Humanizados , Citotoxicidade Celular Dependente de Anticorpos , Antígenos de Neoplasias/imunologia , Células CHO , Moléculas de Adesão Celular/imunologia , Cricetinae , Cricetulus , Molécula de Adesão da Célula Epitelial , Humanos , Neoplasias Pulmonares/imunologia , Camundongos , Metástase Neoplásica/tratamento farmacológico , Especificidade da Espécie , Transplante Isogênico
13.
Mol Immunol ; 43(8): 1129-43, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16139892

RESUMO

We have developed a novel single-chain Ep-CAM-/CD3-bispecific single-chain antibody construct designated MT110. MT110 redirected unstimulated human peripheral T cells to induce the specific lysis of every Ep-CAM-expressing tumor cell line tested. MT110 induced a costimulation independent polyclonal activation of CD4- and CD8-positive T cells as seen by de novo expression of CD69 and CD25, and secretion of interferon gamma, tumor necrosis factor alpha, and interleukins 2, 4 and 10. CD8-positive T cells made the major contribution to redirected tumor cell lysis by MT110. With a delay, CD4-positive cells could also contribute presumably as consequence of a dramatic upregulation of granzyme B expression. MT110 was highly efficacious in a NOD/SCID mouse model with subcutaneously growing SW480 human colon cancer cells. Five daily doses of 1 microg MT110 on days 0-4 completely prevented tumor outgrowth in all mice treated. The bispecific antibody construct also led to a durable eradication of established tumors in all mice treated with 1 microg doses of MT110 on days 8-12 after tumor inoculation. Finally, MT110 could eradicate patient-derived metastatic ovarian cancer tissue growing under the skin of NOD/SCID mice. MT110 appears as an attractive bispecific antibody candidate for treatment of human Ep-CAM-overexpressing carcinomas.


Assuntos
Anticorpos Biespecíficos/imunologia , Anticorpos Biespecíficos/uso terapêutico , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Neoplasias/tratamento farmacológico , Animais , Especificidade de Anticorpos , Antígenos CD19/metabolismo , Complexo CD3/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Citotoxicidade Imunológica , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Humanos , Cinética , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Neoplasias/patologia , Proteínas Recombinantes/isolamento & purificação , Anticorpos de Cadeia Única
14.
Mol Immunol ; 43(6): 763-71, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16360021

RESUMO

Certain bispecific single-chain antibody constructs exhibit an extraordinary potency for polyclonal T cell engagement and target cell lysis. Here we studied the structural basis for this potency, using laser scanning confocal microscopy. Cytolytic human T cell synapses could be triggered either by addition of a specific peptide antigen or an Ep-CAM-/CD3-bispecific T cell engager (BiTE). Both kinds of synapses showed a comparable distribution of all protein markers investigated. Two other BiTEs constructed from different Ep-CAM-specific antibodies gave similar results. BiTEs could also induce lytic synapses between human T cells and a MHC class I-negative, Ep-CAM cDNA-transfected cell line resulting in potent target cell lysis. This shows that certain T cell recognition molecules on target cells are dispensable for synapse formation and BiTE activity, and suggests that BiTE-activated polyclonal T cells may ignore major immune evasion mechanisms of tumor cells in vivo, such as loss of MHC class I expression.


Assuntos
Anticorpos Biespecíficos/imunologia , Antígenos de Histocompatibilidade Classe I , Neoplasias/imunologia , Linfócitos T Citotóxicos/imunologia , Anticorpos Biespecíficos/química , Comunicação Celular/imunologia , Linhagem Celular Tumoral , Técnicas de Cocultura , Epitopos de Linfócito T/imunologia , Humanos , Ativação Linfocitária/imunologia , Microscopia Confocal , Neoplasias/patologia , Evasão Tumoral
15.
Drug Discov Today ; 10(18): 1237-44, 2005 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-16213416

RESUMO

Bispecific T-cell engager molecules (BiTEs) constitute a class of bispecific single-chain antibodies for the polyclonal activation and redirection of cytotoxic T cells against pathogenic target cells. BiTEs combine a unique set of properties that have not yet been reported for any other kind of bispecific antibody construct, namely extraordinary potency and efficacy against target cells at low T-cell numbers without the need for T-cell co-stimulation. Here we review novel insights into the mechanism of BiTE action, which help to explain the unique features of BiTEs, as well as data from various animal models demonstrating the outstanding therapeutic potential of BiTEs for the treatment of malignant diseases.


Assuntos
Anticorpos Biespecíficos/uso terapêutico , Neoplasias/terapia , Linfócitos T/imunologia , Animais , Anticorpos Biespecíficos/farmacologia , Citotoxicidade Imunológica , Humanos , Ativação Linfocitária , Neoplasias/imunologia
16.
Int J Cancer ; 115(1): 98-104, 2005 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-15688411

RESUMO

Certain bispecific antibodies exhibit an extraordinary potency and efficacy for target cell lysis by eliciting a polyclonal T-cell response. One example is a CD19-/CD3-bispecific single-chain antibody construct (bscCD19xCD3), which at femtomolar concentrations can redirect cytotoxic T cells to eliminate human B lymphocytes, B lymphoma cell lines and patient-derived malignant B cells. Here we have further explored the basis for this high potency. Using video-assisted microscopy, bscCD19xCD3 was found to alter the motility and activity of T cells from a scanning to a killing mode. Individual T cells could eliminate multiple target cells within a 9 hr time period, resulting in nuclear fragmentation and membrane blebbing of target cells. Complete target cell elimination was observed within 24 hr at effector-to-target cell ratios as low as 1:5. Under optimal conditions, cell killing started within minutes after addition of bscCD19xCD3, suggesting that the rate of serial killing was mostly determined by T-cell movement and target cell scanning and lysis. At all times, T cells remained highly motile, and no clusters of T and target cells were induced by the bispecific antibody. Bystanding target-negative cells were not detectably affected. Repeated target cell lysis by bscCD19xCD3-activated T cells increased the proportion of CD19/CD3 double-positive T cells, which was most likely a consequence of transfer of CD19 from B to T cells during cytolytic synapse formation. To our knowledge, this is the first study showing that a bispecific antibody can sustain multiple rounds of target cell lysis by T cells.


Assuntos
Antígenos CD19/biossíntese , Complexo CD3/biossíntese , Fragmentos de Imunoglobulinas/química , Imunoterapia/métodos , Neoplasias/imunologia , Linfócitos T Citotóxicos/imunologia , Anticorpos Biespecíficos/química , Linfócitos B/imunologia , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Citotoxicidade Imunológica , Relação Dose-Resposta a Droga , Citometria de Fluxo , Humanos , Interleucina-2/metabolismo , Cinética , Ativação Linfocitária , Microscopia de Vídeo , Linfócitos T/imunologia , Fatores de Tempo
17.
Mol Cell Biol ; 24(14): 6501-13, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15226449

RESUMO

The antiapoptotic function of the interleukin-7 (IL-7) receptor is related to regulation of three members of the Bcl2 family: synthesis of Bcl2, phosphorylation of Bad, and cytosolic retention of Bax. Here we show that, in an IL-7-dependent murine T-cell line, different regions of the IL-7 receptor initiate the signal transduction pathways that regulate these proteins. Both Box1 and Y449 are required to signal Bcl2 synthesis and Bax cytosolic retention. This suggests a sequential model in which Jak1, which binds to Box1, is first activated and then phosphorylates Y449, leading to Bcl2 and Bax regulation, accounting for approximately 90% of the survival function. Phosphorylation of Bad required Box1 but not Y449, suggesting that Jak1 also initiates an additional signaling cascade that accounts for approximately 10% of the survival function. Stat5 was activated from the Y449 site but only partially accounted for the survival signal. Proliferation required both Y449 and Box1. Thymocyte development in vivo showed that deletion of Y449 eliminated 90% of alphabeta T-cell development and completely eliminated gammadelta T-cell development, whereas deleting Box 1 completely eliminated both alphabeta and gammadelta T-cell development. Thus the IL-7 receptor controls at least two distinct pathways, in addition to Stat5, that are required for cell survival.


Assuntos
Proteínas do Leite , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Receptores de Interleucina-7/metabolismo , Linfócitos T/fisiologia , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Divisão Celular , Linhagem Celular , Sobrevivência Celular , Proteínas de Ligação a DNA/metabolismo , Ativação Enzimática , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/fisiologia , Humanos , Janus Quinase 1 , Camundongos , Fosforilação , Estrutura Terciária de Proteína , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Receptores de Interleucina-4/genética , Receptores de Interleucina-4/metabolismo , Receptores de Interleucina-7/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Retroviridae/genética , Retroviridae/metabolismo , Fator de Transcrição STAT5 , Transdução de Sinais/fisiologia , Linfócitos T/citologia , Linfócitos T/imunologia , Transativadores/metabolismo , Proteína X Associada a bcl-2 , Proteína de Morte Celular Associada a bcl
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA