RESUMO
Antibody (AB) testing or serotesting for reactive ABs against antigenic proteins is broadly used. Parallel examination of many antigens is of high interest to identify autoantibodies (AAB) or differential antigenic reactivities in many biological settings like allergy and infectious autoimmune, cancerous, or systemic disease. The resulting AAB profiles can be used for diagnosis, prognosis, and monitoring of such conditions. Protein microarrays have been used for AB profiling over the past decade but show some significant limitations which make them unsuitable for clinical applications. Alternative multiplexing platforms such as bead arrays were shown to provide a versatile tool for the confirmation and efficient analysis of high numbers of biological samples. Luminex' bead-based xMAP technology combines advantages such as multiplexing and lower demand for sample volume and at the same time overcomes the challenges of microarrays. It works faster, shows better antigen stability, is more reproducible, and allows the analysis of up to 500 analytes in one sample well. In this chapter we introduce our established workflow for the use of the xMAP technology for AB profiling including an overview of the method principle and protocols for the covalent immobilization of proteins to the MagPlex beads, confirmation of protein coupling, the execution of a multiplexed bead-based protein immunoassay, and subsequent data handling.
Assuntos
Antígenos , Soro , Testes Imunológicos , Autoanticorpos , Imunoensaio/métodosRESUMO
Antigenic peptides are commonly used in serological test settings such as enzyme-linked immunosorbent assays (ELISA) to determine reactive antibodies (ABs) from serum or plasma samples. The use of synthetic peptides provides advantages like lower production effort and easier incorporation of specific chemical modifications compared to full-length antigenic proteins. Multiplexed antibody (AB) profiling methods such as microarray technologies enable the simultaneous identification of multiple novel biomarkers for the use in early disease diagnostics, vaccine development, or monitoring of immune responses. Despite various benefits they still show major limitations which can be overcome with bead-based assay technologies like the multi-analyte profiling (xMAP) technology developed by Luminex. In this chapter we introduce our established workflow for AB profiling with a multiplexed bead-based peptide immunoassay. The workflow is based on copper-catalyzed click chemistry to immobilize designed synthetic peptides onto uniquely color-coded paramagnetic beads in an orientation-specific manner. The individual peptide-coupled beads can be distinguished by their unique emission spectra during readout in the xMAP instrument and therefore allow testing of up to 500 different antigenic peptides in one multiplexed reaction. The multistep process described in this chapter is divided into separate sections for peptide design, coupling of functionalized peptides to MagPlex beads via click chemistry, confirmation of successful peptide immobilization, processing of serum or plasma samples, or preferably purified IgG thereof, with the multiplexed bead-based peptide immunoassay and subsequent data export and analysis.
Assuntos
Anticorpos , Soro , Imunoensaio/métodos , Ensaio de Imunoadsorção Enzimática/métodos , Soro/química , PeptídeosRESUMO
The receptor binding domain (RBD) of the SARS-CoV-2 spike (S)-protein is a prime target of virus-neutralizing antibodies present in convalescent sera of COVID-19 patients and thus is considered a key antigen for immunosurveillance studies and vaccine development. Although recombinant expression of RBD has been achieved in several eukaryotic systems, mammalian cells have proven particularly useful. The authors aimed to optimize RBD produced in HEK293-6E cells towards a stable homogeneous preparation and addressed its O-glycosylation as well as the unpaired cysteine residue 538 in the widely used RBD (319-541) sequence. The authors found that an intact O-glycosylation site at T323 is highly relevant for the expression and maintenance of RBD as a monomer. Furthermore, it was shown that deletion or substitution of the unpaired cysteine residue C538 reduces the intrinsic propensity of RBD to form oligomeric aggregates, concomitant with an increased yield of the monomeric form of the protein. Bead-based and enzyme-linked immunosorbent assays utilizing these optimized RBD variants displayed excellent performance with respect to the specific detection of even low levels of SARS-CoV-2 antibodies in convalescent sera. Hence, these RBD variants could be instrumental for the further development of serological SARS-CoV-2 tests and inform the design of RBD-based vaccine candidates.
Assuntos
COVID-19 , SARS-CoV-2 , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/terapia , Cisteína , Células HEK293 , Humanos , Imunização Passiva , Mamíferos , Ligação Proteica , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Soroterapia para COVID-19RESUMO
The receptor binding domain (RBD) of the SARS-CoV-2 spike protein plays a key role in the virus-host cell interaction, and viral infection. The RBD is a major target for neutralizing antibodies, whilst recombinant RBD is commonly used as an antigen in serological assays. Such assays are essential tools to gain control over the pandemic and detect the extent and durability of an immune response in infected or vaccinated populations. Transient expression in plants can contribute to the fast production of viral antigens, which are required by industry in high amounts. Whilst plant-produced RBDs are glycosylated, N-glycan modifications in plants differ from humans. This can give rise to the formation of carbohydrate epitopes that can be recognized by anti-carbohydrate antibodies present in human sera. For the performance of serological tests using plant-produced recombinant viral antigens, such cross-reactive carbohydrate determinants (CCDs) could result in false positives. Here, we transiently expressed an RBD variant in wild-type and glycoengineered Nicotiana benthamiana leaves and characterized the impact of different plant-specific N-glycans on RBD reactivity in serological assays. While the overall performance of the different RBD glycoforms was comparable to each other and to a human cell line produced RBD, there was a higher tendency toward false positive results with sera containing allergy-related CCD-antibodies when an RBD carrying ß1,2-xylose and core α1,3-fucose was used. These rare events could be further minimized by pre-incubating sera from allergic individuals with a CCD-inhibitor. Thereby, false positive signals obtained from anti-CCD antibodies, could be reduced by 90%, on average.
RESUMO
Nicotiana benthamiana is used worldwide as production host for recombinant proteins. Many recombinant proteins such as monoclonal antibodies, growth factors or viral antigens require posttranslational modifications like glycosylation for their function. Here, we transiently expressed different variants of the glycosylated receptor binding domain (RBD) from the SARS-CoV-2 spike protein in N. benthamiana. We characterized the impact of variations in RBD-length and posttranslational modifications on protein expression, yield and functionality. We found that a truncated RBD variant (RBD-215) consisting of amino acids Arg319-Leu533 can be efficiently expressed as a secreted soluble protein. Purified RBD-215 was mainly present as a monomer and showed binding to the conformation-dependent antibody CR3022, the cellular receptor angiotensin converting enzyme 2 (ACE2) and to antibodies present in convalescent sera. Expression of RBD-215 in glycoengineered ΔXT/FT plants resulted in the generation of complex N-glycans on both N-glycosylation sites. While site-directed mutagenesis showed that the N-glycans are important for proper RBD folding, differences in N-glycan processing had no effect on protein expression and function.
RESUMO
Glycosylation of viral envelope proteins is important for infectivity and immune evasion. The SARS-CoV-2 spike protein is heavily glycosylated and host-derived glycan modifications contribute to the formation of specific immunogenic epitopes, enhance the virus-cell interaction or affect virus transmission. On recombinant viral antigens used as subunit vaccines or for serological assays, distinct glycan structures may enhance the immunogenicity and are recognized by naturally occurring antibodies in human sera. Here, we performed an in vivo glycoengineering approach to produce recombinant variants of the SARS-CoV-2 receptor-binding domain (RBD) with blood group antigens in Nicotiana benthamiana plants. SARS-CoV-2 RBD and human glycosyltransferases for the blood group ABH antigen formation were transiently co-expressed in N. benthamiana leaves. Recombinant RBD was purified and the formation of complex N-glycans carrying blood group A antigens was shown by immunoblotting and MS analysis. Binding to the cellular ACE2 receptor and the conformation-dependent CR3022 antibody showed that the RBD glycosylation variants carrying blood group antigens were functional. Analysis of sera from RBD-positive and RBD-negative individuals revealed further that non-infected RBD-negative blood group O individuals have antibodies that strongly bind to RBD modified with blood group A antigen structures. The binding of IgGs derived from sera of non-infected RBD-negative blood group O individuals to blood group A antigens on SARS-CoV-2 RBD suggests that these antibodies could provide some degree of protection from virus infection.
RESUMO
DNA methylation is a chemically stable key-player in epigenetics. In the vertebrate genome the 5-methyl cytosine (5mC) has been found almost exclusively in the CpG dinucleotide context. CpG dinucleotides are enriched in CpG islands very frequently located within or close to gene promoters. Analyses of DNA methylation changes in human diagnostics have been conducted classically using methylation-sensitive restriction enzymes (MSRE). Since the discovery of bisulfite conversion-based sequencing and PCR assays, MSRE-based PCR assays have been less frequently used, although especially in the field of cancer epigenetics MSRE-based genome-wide discovery and targeted screening applications have been and are still performed successfully. Even though epigenome-wide discovery of altered DNA methylation patterns has found its way into various fields of human disease and molecular genetics research, the validation of findings upon discovery is still a bottleneck. Usually several multiples of 10 up to 100 candidate biomarkers from discovery have to be confirmed or are of interest for further work. In particular, bisulfite PCR assays are often limited in the number of candidates which can be analyzed, due to their low multiplexing capability, especially, if only small amounts of DNA are available from for example clinical specimens. In clinical research and diagnostics a similar situation arises for the analyses of cell-free DNA (cfDNA) in body fluids or circulating tumor cells (CTCs). Although tissue- or disease- (e.g., cancer) specific DNA methylation patterns can be deduced very efficiently in a genome-wide manner if around 100 ng of DNA are available, confirming these candidates and selecting target-sequences for studying methylation changes in liquid biopsies using cfDNA or CTCs remains a big challenge. Along these lines we have developed MSRE-qPCR and introduce here method details, which have been found very suitable for the efficient confirmation and testing of DNA methylation in a quantitative multiplexed manner (e.g., 48-96 plex) from ng amounts of DNA. The method is applicable in a standard qPCR setting as well for nanoliter scaled high-throughput qPCR, enabling detection of <10 copies of targets, thus suitable to pick up 0.1-1% of specific methylated DNA in an unmethylated background.
Assuntos
Metilação de DNA , Enzimas de Restrição do DNA/metabolismo , Reação em Cadeia da Polimerase Multiplex/métodos , Ilhas de CpG , Epigênese Genética , Feminino , Humanos , Masculino , Análise de Sequência de DNA/métodos , SulfitosRESUMO
Does the longevity phenotype offer an advantage in wound healing (WH)? In an attempt to answer this question, we explored skin wound healing in the long-lived transgenic αMUPA mice, a unique model of genetically extended life span. These mice spontaneously eat less, preserve their body mass, are more resistant to spontaneous and induced tumorigenesis and live longer, thus greatly mimicking the effects of caloric restriction (CR). We found that αMUPA mice showed a much slower age-related decline in the rate of WH than their wild-type counterparts (FVB/N). After full closure of the wound, gene expression in the skin of old αMUPA mice returned close to basal levels. In contrast, old FVB/N mice still exhibited significant upregulation of genes associated with growth-promoting pathways, apoptosis and cell-cell/cell-extra cellular matrix interaction, indicating an ongoing tissue remodeling or an inability to properly shut down the repair process. It appears that the CR-like longevity phenotype is associated with more balanced and efficient WH mechanisms in old age, which could ensure a long-term survival advantage.
Assuntos
Longevidade , Ativador de Plasminogênio Tipo Uroquinase/genética , Cicatrização , Fatores Etários , Animais , Movimento Celular , Feminino , Fibroblastos/fisiologia , Expressão Gênica , Camundongos Transgênicos , Pele/patologia , Ativador de Plasminogênio Tipo Uroquinase/metabolismoRESUMO
OBJECTIVE: We investigated the association between the functional, epigenetic, and expressional profile of human adventitial progenitor cells (APCs) and therapeutic activity in a model of limb ischemia. APPROACH AND RESULTS: Antigenic and functional features were analyzed throughout passaging in 15 saphenous vein (SV)-derived APC lines, of which 10 from SV leftovers of coronary artery bypass graft surgery and 5 from varicose SV removal. Moreover, 5 SV-APC lines were transplanted (8×10(5) cells, IM) in mice with limb ischemia. Blood flow and capillary and arteriole density were correlated with functional characteristics and DNA methylation/expressional markers of transplanted cells. We report successful expansion of tested lines, which reached the therapeutic target of 30 to 50 million cells in ≈10 weeks. Typical antigenic profile, viability, and migratory and proangiogenic activities were conserved through passaging, with low levels of replicative senescence. In vivo, SV-APC transplantation improved blood flow recovery and revascularization of ischemic limbs. Whole genome screening showed an association between DNA methylation at the promoter or gene body level and microvascular density and to a lesser extent with blood flow recovery. Expressional studies highlighted the implication of an angiogenic network centered on the vascular endothelial growth factor receptor as a predictor of microvascular outcomes. FLT-1 gene silencing in SV-APCs remarkably reduced their ability to form tubes in vitro and support tube formation by human umbilical vein endothelial cells, thus confirming the importance of this signaling in SV-APC angiogenic function. CONCLUSIONS: DNA methylation landscape illustrates different therapeutic activities of human APCs. Epigenetic screening may help identify determinants of therapeutic vasculogenesis in ischemic disease.
Assuntos
Túnica Adventícia/transplante , Metilação de DNA , Epigênese Genética , Isquemia/cirurgia , Músculo Esquelético/irrigação sanguínea , Neovascularização Fisiológica , Veia Safena/transplante , Transplante de Células-Tronco , Células-Tronco/fisiologia , Túnica Adventícia/citologia , Animais , Velocidade do Fluxo Sanguíneo , Movimento Celular , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Modelos Animais de Doenças , Perfilação da Expressão Gênica/métodos , Membro Posterior , Células Endoteliais da Veia Umbilical Humana/fisiologia , Humanos , Isquemia/genética , Isquemia/fisiopatologia , Camundongos , Neovascularização Fisiológica/genética , Recuperação de Função Fisiológica , Fluxo Sanguíneo Regional , Veia Safena/citologia , Células-Tronco/metabolismo , Fatores de TempoRESUMO
DNA methylation is a stable covalent epigenetic modification of primarily CpG dinucleotides that has recently gained considerable attention for its use as a biomarker in different clinical settings, including disease diagnosis, prognosis and therapeutic response prediction. Although the advent of genome-wide DNA methylation profiling in primary disease tissue has provided a manifold resource for biomarker development, only a tiny fraction of DNA methylation-based assays have reached clinical testing. Here, we provide a critical overview of different analytical methods that are suitable for biomarker validation, including general study design considerations, which might help to streamline epigenetic marker development. Furthermore, we highlight some of the recent marker validation studies and established markers that are currently commercially available for assisting in clinical management of different cancers.
Assuntos
Metilação de DNA , Epigenômica/métodos , Epigenômica/normas , Neoplasias/genética , Biomarcadores , Ilhas de CpG , Epigênese Genética , Guias como Assunto , Humanos , Neoplasias/sangue , Estudos de Validação como AssuntoRESUMO
AIMS: Vascular wall-resident progenitor cells hold great promise for cardiovascular regenerative therapy. This study evaluates the impact of oxidative stress on the viability and functionality of adventitia-derived progenitor cells (APCs) from vein remnants of coronary artery bypass graft (CABG) surgery. We also investigated the antioxidant enzymes implicated in the resistance of APCs to oxidative stress-induced damage and the effect of interfering with one of them, the extracellular superoxide dismutase (EC-SOD/SOD3), on APC therapeutic action in a model of peripheral ischemia. RESULTS: After exposure to hydrogen peroxide, APCs undergo apoptosis to a smaller extent than endothelial cells (ECs). This was attributed to up-regulation of antioxidant enzymes, especially SODs and catalase. Pharmacological inhibition of SODs increases reactive oxygen species (ROS) levels in APCs and impairs their survival. Likewise, APC differentiation results in SOD down-regulation and ROS-induced apoptosis. Oxidative stress increases APC migratory activity, while being inhibitory for ECs. In addition, oxidative stress does not impair APC capacity to promote angiogenesis in vitro. In a mouse limb ischemia model, an injection of naïve APCs, but not SOD3-silenced APCs, helps perfusion recovery and neovascularization, thus underlining the importance of this soluble isoform in protection from ischemia. INNOVATION: This study newly demonstrates that APCs are endowed with enhanced detoxifier and antioxidant systems and that SOD3 plays an important role in their therapeutic activity in ischemia. CONCLUSIONS: APCs from vein remnants of CABG patients express antioxidant defense mechanisms, which enable them to resist stress. These properties highlight the potential of APCs in cardiovascular regenerative medicine.
Assuntos
Túnica Adventícia/citologia , Antioxidantes/farmacologia , Isquemia/metabolismo , Isquemia/terapia , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Animais , Antígenos de Superfície/metabolismo , Apoptose/efeitos dos fármacos , Apoptose/genética , Diferenciação Celular/efeitos dos fármacos , Modelos Animais de Doenças , Regulação para Baixo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Extremidades/irrigação sanguínea , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Inativação Gênica , Humanos , Imunofenotipagem , Isquemia/genética , Masculino , Camundongos , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Espécies Reativas de Oxigênio/metabolismo , Células-Tronco/citologia , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismoRESUMO
BACKGROUND: MGMT promoter methylation is associated with favorable prognosis and chemosensitivity in glioblastoma multiforme (GBM), especially in elderly patients. We aimed to develop a simple methylation-sensitive restriction enzyme (MSRE)-based quantitative PCR (qPCR) assay, allowing the quantification of MGMT promoter methylation. METHODS: DNA was extracted from non-neoplastic brain (n = 24) and GBM samples (n = 20) upon 3 different sample conservation conditions (-80 °C, formalin-fixed and paraffin-embedded (FFPE); RCL2-fixed). We evaluated the suitability of each fixation method with respect to the MSRE-coupled qPCR methylation analyses. Methylation data were validated by MALDITOF. RESULTS: qPCR was used for evaluation of alternative tissue conservation procedures. DNA from FFPE tissue failed reliable testing; DNA from both RCL2-fixed and fresh frozen tissues performed equally well and was further used for validation of the quantitative MGMT methylation assay (limit of detection (LOD): 19.58 pg), using individual's undigested sample DNA for calibration. MGMT methylation analysis in non-neoplastic brain identified a background methylation of 0.10 ± 11% which we used for defining a cut-off of 0.32% for patient stratification. Of GBM patients 9 were MGMT methylationpositive (range: 0.56 - 91.95%), and 11 tested negative. MALDI-TOF measurements resulted in a concordant classification of 94% of GBM samples in comparison to qPCR. CONCLUSIONS: The presented methodology allows quantitative MGMT promoter methylation analyses. An amount of 200 ng DNA is sufficient for triplicate analyses including control reactions and individual calibration curves, thus excluding any DNA qualityderived bias. The combination of RCL2-fixation and quantitative methylation analyses improves pathological routine examination when histological and molecular analyses on limited amounts of tumor samples are necessary for patient stratification.
Assuntos
Neoplasias Encefálicas/metabolismo , Metilases de Modificação do DNA/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Glioblastoma/metabolismo , Reação em Cadeia da Polimerase/métodos , Fixação de Tecidos/métodos , Proteínas Supressoras de Tumor/metabolismo , Adulto , Idoso , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Estudos de Casos e Controles , Metilação de DNA , Enzimas de Restrição do DNA , Fixadores , Formaldeído , Glioblastoma/diagnóstico , Glioblastoma/genética , Humanos , Pessoa de Meia-Idade , Inclusão em Parafina , Valor Preditivo dos Testes , Regiões Promotoras GenéticasRESUMO
Hypersensitivity pneumonitis (HP) represents the immunologically mediated lung disease induced by repeated inhalations of a wide variety of certain finely dispersed organic antigens. In susceptible subjects, these inhalations provoke a hypersensitivity reaction characterized by intense inflammation of the terminal bronchioles, the interstitium and the alveolar tree. The inflammation often organizes into granulomas and may progress to pulmonary fibrosis. Our previous work indicated that cell extract of gram-negative bacteria Pantoea agglomerans (SE-PA) causes, in young C57BL/6J mice, pulmonary changes that are very similar to the clinical manifestations of HP in men. The purpose of presented studies was to describe the response of mice immune system while exposed to SE-PA. Particular attention was paid to examine the age influence on SE-PA induced inflammation and fibrosis in lung tissue. We used 3- and 18-month-old C57BL/6J mice. Lung samples were collected from untreated mice and animals exposed to harmful agent for 7 and 28 days. HP development was monitored by histological and biochemical evaluation. Using ELISA tests, we examined concentration of pro- and anti-inflammatory cytokines in lung homogenates. Our study demonstrated again that SE-PA provokes in mice changes typical for the clinical picture of HP, and that successive stages of disease (acute, subacute and chronic) might be obtained by modulation of time exposure. Furthermore, we found that animals' age at the time of sensitization influences the nature of observed changes (cytokine expression pattern) and the final outcome (reaction intensity and scale of fibrosis).
Assuntos
Envelhecimento/imunologia , Alveolite Alérgica Extrínseca/imunologia , Misturas Complexas/toxicidade , Pantoea , Alveolite Alérgica Extrínseca/etiologia , Alveolite Alérgica Extrínseca/patologia , Animais , Citocinas/imunologia , Feminino , Hidroxiprolina/imunologia , Pulmão/imunologia , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BLRESUMO
OBJECTIVE: The p75 neurotrophin receptor (p75(NTR)) contributes to diabetes mellitus-induced defective postischemic neovascularization. The interleukin-33 receptor ST2 is expressed as transmembrane (ST2L) and soluble (sST2) isoforms. Here, we studied the following: (1) the impact of p75(NTR) in the healing of ischemic and diabetic calf wounds; (2) the link between p75(NTR) and ST2; and (3) circulating sST2 levels in critical limb ischemia (CLI) patients. METHODS AND RESULTS: Diabetes mellitus was induced in p75(NTR) knockout (p75KO) mice and wild-type (WT) littermates by streptozotocin. Diabetic and nondiabetic p75KO and WT mice received left limb ischemia induction and a full-thickness wound on the ipsilateral calf. Diabetes mellitus impaired wound closure and angiogenesis and increased ST2 expression in WT, but not in p75KO wounds. In cultured endothelial cells, p75(NTR) promoted ST2 (both isoforms) expression through p38(MAPK)/activating transcription factor 2 pathway activation. Next, sST2 was measured in the serum of patients with CLI undergoing either revascularization or limb amputation and in the 2 nondiabetic groups (with CLI or nonischemic individuals). Serum sST2 increased in diabetic patients with CLI and was directly associated with higher mortality at 1 year from revascularization. CONCLUSIONS: p75(NTR) inhibits the healing of ischemic lower limb wounds in diabetes mellitus and promotes ST2 expression. Circulating sST2 predicts mortality in diabetic CLI patients.
Assuntos
Diabetes Mellitus Experimental/fisiopatologia , Diabetes Mellitus/mortalidade , Isquemia/fisiopatologia , Extremidade Inferior/irrigação sanguínea , Proteínas do Tecido Nervoso/fisiologia , Receptores de Superfície Celular/metabolismo , Receptores de Interleucina/metabolismo , Receptores de Fator de Crescimento Neural/fisiologia , Fator 2 Ativador da Transcrição/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Biomarcadores/metabolismo , Células Cultivadas , Complicações do Diabetes/complicações , Diabetes Mellitus/metabolismo , Diabetes Mellitus/fisiopatologia , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/metabolismo , Modelos Animais de Doenças , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Feminino , Humanos , Proteína 1 Semelhante a Receptor de Interleucina-1 , Isquemia/etiologia , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/farmacologia , Valor Preditivo dos Testes , Receptores de Fator de Crescimento Neural/deficiência , Receptores de Fator de Crescimento Neural/genética , Estreptozocina/efeitos adversos , Cicatrização/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismoRESUMO
BACKGROUND: Circulating cell free DNA in serum as well as serum-autoantibodies and the serum proteome have great potential to contribute to early cancer diagnostics via non invasive blood tests. However, most DNA preparation protocols destroy the protein fraction and therefore do not allow subsequent protein analyses. In this study a novel approach based on methyl binding domain protein (MBD) is described to overcome the technical difficulties of combining DNA and protein analysis out of one single serum sample. METHODS: Serum or plasma samples from 98 control individuals and 54 breast cancer patients were evaluated upon silica membrane- or MBD affinity-based DNA isolation via qPCR targeting potential DNA methylation markers as well as by protein-microarrays for tumor-autoantibody testing. RESULTS: In control individuals, an average DNA level of 22.8 ± 25.7 ng/ml was detected applying the silica membrane based protocol and 8.5 ± 7.5 ng/ml using the MBD-approach, both values strongly dependent on the serum sample preparation methods used. In contrast to malignant and benign tumor serum samples, cell free DNA concentrations were significantly elevated in sera of metastasizing breast cancer patients. Technical evaluation revealed that serum upon MBD-based DNA isolation is suitable for protein-array analyses when data are consistent to untreated serum samples. CONCLUSION: MBD affinity purification allows DNA isolations under native conditions retaining the protein function, thus for example enabling combined analyses of DNA methylation and autoantigene-profiles from the same serum sample and thereby improving minimal invasive diagnostics.